File size: 2,482 Bytes
88bf3d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-large-patch16-224-in21k-dungeon-geo-morphs-denoised-04Dec24-002
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9656565656565657
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large-patch16-224-in21k-dungeon-geo-morphs-denoised-04Dec24-002
This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co./google/vit-large-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1107
- Accuracy: 0.9657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4876 | 4.0 | 10 | 1.1611 | 0.6545 |
| 0.6201 | 8.0 | 20 | 0.5442 | 0.9152 |
| 0.1543 | 12.0 | 30 | 0.2724 | 0.9556 |
| 0.0344 | 16.0 | 40 | 0.1593 | 0.9636 |
| 0.0095 | 20.0 | 50 | 0.1314 | 0.9657 |
| 0.0047 | 24.0 | 60 | 0.1091 | 0.9657 |
| 0.0033 | 28.0 | 70 | 0.1139 | 0.9636 |
| 0.0029 | 32.0 | 80 | 0.1107 | 0.9657 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|