--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-rotated-dungeons-v9 results: - task: name: Image Classification type: image-classification dataset: name: rotated_maps type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.625 --- # vit-base-patch16-224-in21k-rotated-dungeons-v9 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the rotated_maps dataset. It achieves the following results on the evaluation set: - Loss: 1.3109 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 22 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.014 | 8.3333 | 100 | 1.5028 | 0.5 | | 0.6464 | 16.6667 | 200 | 1.3109 | 0.625 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1