File size: 2,721 Bytes
20ea549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
043507a
 
20ea549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
982b58a
53b320f
 
20ea549
8c4f283
 
20ea549
53b320f
8c4f283
043507a
20ea549
 
 
53b320f
 
043507a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ea549
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: git-base-one-entrance-dungeons
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# git-base-one-entrance-dungeons

This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co./microsoft/git-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0219
- Wer Score: 1.2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 0.025         | 5.0   | 10   | 0.0412          | 18.6      |
| 0.0225        | 10.0  | 20   | 0.0377          | 18.8      |
| 0.0182        | 15.0  | 30   | 0.0377          | 20.6      |
| 0.0135        | 20.0  | 40   | 0.0337          | 21.2      |
| 0.0095        | 25.0  | 50   | 0.0314          | 17.0      |
| 0.0067        | 30.0  | 60   | 0.0256          | 17.0      |
| 0.0054        | 35.0  | 70   | 0.0177          | 5.8       |
| 0.006         | 40.0  | 80   | 0.0240          | 37.8      |
| 0.0063        | 45.0  | 90   | 0.0213          | 0.2       |
| 0.0032        | 50.0  | 100  | 0.0222          | 1.8       |
| 0.0021        | 55.0  | 110  | 0.0210          | 1.6       |
| 0.0015        | 60.0  | 120  | 0.0203          | 2.6       |
| 0.0012        | 65.0  | 130  | 0.0211          | 1.4       |
| 0.0011        | 70.0  | 140  | 0.0217          | 1.4       |
| 0.001         | 75.0  | 150  | 0.0218          | 1.2       |
| 0.0009        | 80.0  | 160  | 0.0219          | 1.2       |
| 0.0009        | 85.0  | 170  | 0.0219          | 1.2       |
| 0.0009        | 90.0  | 180  | 0.0219          | 1.2       |
| 0.0009        | 95.0  | 190  | 0.0219          | 1.2       |
| 0.0009        | 100.0 | 200  | 0.0219          | 1.2       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1