machineteacher
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,139 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- wi_locness
|
5 |
+
- matejklemen/falko_merlin
|
6 |
+
- paws
|
7 |
+
- paws-x
|
8 |
+
- asset
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
- de
|
12 |
+
- es
|
13 |
+
- ar
|
14 |
+
- ja
|
15 |
+
- ko
|
16 |
+
- zh
|
17 |
+
metrics:
|
18 |
+
- bleu
|
19 |
+
- rouge
|
20 |
+
- sari
|
21 |
+
- accuracy
|
22 |
+
library_name: transformers
|
23 |
---
|
24 |
+
|
25 |
+
# Model Card for mEdIT-xl
|
26 |
+
|
27 |
+
The `medit-xl` model was obtained by fine-tuning the `MBZUAI/bactrian-x-llama-7b-lora` model on the mEdIT dataset.
|
28 |
+
|
29 |
+
**Paper:** mEdIT: Multilingual Text Editing via Instruction Tuning
|
30 |
+
|
31 |
+
**Authors:** Vipul Raheja, Dimitris Alikaniotis, Vivek Kulkarni, Bashar Alhafni, Dhruv Kumar
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
|
35 |
+
### Model Description
|
36 |
+
|
37 |
+
- **Language(s) (NLP)**: Arabic, Chinese, English, German, Japanese, Korean, Spanish
|
38 |
+
- **Finetuned from model:** `MBZUAI/bactrian-x-llama-7b-lora`
|
39 |
+
|
40 |
+
### Model Sources
|
41 |
+
|
42 |
+
- **Repository:** https://github.com/vipulraheja/medit
|
43 |
+
- **Paper:** https://arxiv.org/abs/2402.16472v1
|
44 |
+
|
45 |
+
## How to use
|
46 |
+
|
47 |
+
Given an edit instruction and an original text, our model can generate the edited version of the text.<br>
|
48 |
+
|
49 |
+
![task_specs](https://cdn-uploads.huggingface.co/production/uploads/60985a0547dc3dbf8a976607/816ZY2t0XPCpMMd6Z072K.png)
|
50 |
+
|
51 |
+
Specifically, our models support both multi-lingual and cross-lingual text revision. Note that the input and output texts are always in the same language. The monolingual
|
52 |
+
vs. cross-lingual setting is determined by comparing the language of the edit instruction in relation to the language of the input text.
|
53 |
+
|
54 |
+
### Instruction format
|
55 |
+
|
56 |
+
Adherence to the following instruction format is essential; failure to do so may result in the model producing less-than-ideal results.
|
57 |
+
|
58 |
+
```
|
59 |
+
instruction_tokens = [
|
60 |
+
"Instruction",
|
61 |
+
"Anweisung",
|
62 |
+
...
|
63 |
+
]
|
64 |
+
|
65 |
+
input_tokens = [
|
66 |
+
"Input",
|
67 |
+
"Aporte",
|
68 |
+
...
|
69 |
+
]
|
70 |
+
|
71 |
+
output_tokens = [
|
72 |
+
"Output",
|
73 |
+
"Produzione",
|
74 |
+
...
|
75 |
+
]
|
76 |
+
|
77 |
+
task_descriptions = [
|
78 |
+
"Fix grammatical errors in this sentence", # <-- GEC task
|
79 |
+
"Umschreiben Sie den Satz", # <-- Paraphrasing
|
80 |
+
...
|
81 |
+
]
|
82 |
+
```
|
83 |
+
|
84 |
+
**The entire list of possible instructions, input/output tokens, and task descriptions can be found in the Appendix of our paper.**
|
85 |
+
|
86 |
+
```
|
87 |
+
prompt_template = """### <instruction_token>:\n<task_description>\n### <input_token>:\n<input>\n### <output_token>:\n\n"""
|
88 |
+
```
|
89 |
+
|
90 |
+
Note that the tokens and the task description need not be in the language of the input (in the case of cross-lingual revision).
|
91 |
+
|
92 |
+
|
93 |
+
### Run the model
|
94 |
+
|
95 |
+
```python
|
96 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
97 |
+
|
98 |
+
model_id = "grammarly/medit-xl"
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
100 |
+
|
101 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
102 |
+
|
103 |
+
# English GEC using Japanese instructions
|
104 |
+
prompt = '### 命令:\n文章を文法的にする\n### 入力:\nI has small cat ,\n### 出力:\n\n'
|
105 |
+
|
106 |
+
inputs = tokenizer(prompt, return_tensors='pt')
|
107 |
+
|
108 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
109 |
+
|
110 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)
|
111 |
+
|
112 |
+
# --> I have a small cat ,
|
113 |
+
|
114 |
+
# German GEC using Japanese instructions
|
115 |
+
prompt = '### 命令:\n文章を文法的にする\n### 入力:\nIch haben eines kleines Katze ,\n### 出力:\n\n'
|
116 |
+
|
117 |
+
# ...
|
118 |
+
# --> Ich habe eine kleine Katze ,
|
119 |
+
```
|
120 |
+
|
121 |
+
#### Software
|
122 |
+
https://github.com/vipulraheja/medit
|
123 |
+
|
124 |
+
## Citation
|
125 |
+
|
126 |
+
**BibTeX:**
|
127 |
+
```
|
128 |
+
@article{raheja2023medit,
|
129 |
+
title={mEdIT: mEdIT: Multilingual Text Editing via Instruction Tuning},
|
130 |
+
author={Vipul Raheja and Dimitris Alikaniotis and Vivek Kulkarni and Bashar Alhafni and Dhruv Kumar},
|
131 |
+
year={2024},
|
132 |
+
eprint={2402.16472v1},
|
133 |
+
archivePrefix={arXiv},
|
134 |
+
primaryClass={cs.CL}
|
135 |
+
}
|
136 |
+
```
|
137 |
+
|
138 |
+
**APA:**
|
139 |
+
Raheja, V., Alikaniotis, D., Kulkarni, V., Alhafni, B., & Kumar, D. (2024). MEdIT: Multilingual Text Editing via Instruction Tuning. ArXiv. /abs/2402.16472
|