nielsr HF staff commited on
Commit
e4e6a32
1 Parent(s): c934335

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -35,12 +35,13 @@ The abstract of the paper states that:
35
  You should ask specific questions to the model in order to get consistent generations. Here we are asking the model whether the sum of values that are in a chart are greater than the largest value.
36
 
37
  ```python
38
- from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
39
  import requests
40
  from PIL import Image
41
 
42
- model = Pix2StructForConditionalGeneration.from_pretrained('ybelkada/matcha-chartqa')
43
- processor = Pix2StructProcessor.from_pretrained('ybelkada/matcha-chartqa')
 
44
  url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png"
45
  image = Image.open(requests.get(url, stream=True).raw)
46
 
@@ -52,7 +53,7 @@ print(processor.decode(predictions[0], skip_special_tokens=True))
52
 
53
  To run the predictions on GPU, simply add `.to(0)` when creating the model and when getting the inputs (`inputs = inputs.to(0)`)
54
 
55
- ## Converting from T5x to huggingface
56
 
57
  You can use the [`convert_pix2struct_checkpoint_to_pytorch.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py) script as follows:
58
  ```bash
 
35
  You should ask specific questions to the model in order to get consistent generations. Here we are asking the model whether the sum of values that are in a chart are greater than the largest value.
36
 
37
  ```python
38
+ from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
39
  import requests
40
  from PIL import Image
41
 
42
+ processor = Pix2StructProcessor.from_pretrained('google/matcha-chartqa')
43
+ model = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-chartqa')
44
+
45
  url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png"
46
  image = Image.open(requests.get(url, stream=True).raw)
47
 
 
53
 
54
  To run the predictions on GPU, simply add `.to(0)` when creating the model and when getting the inputs (`inputs = inputs.to(0)`)
55
 
56
+ # Converting from T5x to huggingface
57
 
58
  You can use the [`convert_pix2struct_checkpoint_to_pytorch.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py) script as follows:
59
  ```bash