SAELens
File size: 1,311 Bytes
016b363
f8afffd
068c017
016b363
 
617c6ee
2159c7f
67b2a69
016b363
bd3fe55
67b2a69
bd3fe55
67b2a69
884074a
016b363
bd3fe55
016b363
 
0127b34
016b363
db1f4e0
 
 
 
 
 
016b363
 
 
 
bd3fe55
016b363
 
 
 
 
 
2232397
 
 
0127b34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: cc-by-4.0
library_name: saelens
---

⚠️ WARNING: We have small labelling issues, and some SAEs appear twice in this repo.

# 1. Gemma Scope

Gemma Scope is a comprehensive, open suite of sparse autoencoders for Gemma 2 9B and 2B. Sparse Autoencoders are a "microscope" of sorts that can help us break down a model’s internal activations into the underlying concepts, just as biologists use microscopes to study the individual cells of plants and animals.

See our [landing page](https://huggingface.co./google/gemma-scope) for details on the whole suite. This is a specific set of SAEs:

# 2. What Is `gemma-scope-2b-pt-res`?

- `gemma-scope-`: See 1.
- `2b-pt-`: These SAEs were trained on Gemma v2 2B base model.
- `res`: These SAEs were trained on the model's residual stream.
- We include experimental SAEs trained on token embeddings in the ./embedding folder. 


# 3. Which SAE is in the [Neuronpedia demo](https://www.neuronpedia.org/gemma-scope)?

https://huggingface.co./google/gemma-scope-2b-pt-res/tree/main/layer_20/width_16k/average_l0_71

# 4. Point of Contact

Point of contact: Arthur Conmy

Contact by email:

```python
''.join(list('moc.elgoog@ymnoc')[::-1])
```

HuggingFace account:
https://huggingface.co./ArthurConmyGDM

# Citation

Paper: https://arxiv.org/abs/2408.05147