from typing import Any, Dict, List import requests import torch from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image class EndpointHandler: def __init__( self, model_dir: str = "/opt/huggingface/model", **kwargs: Any, ) -> None: self.model = PaliGemmaForConditionalGeneration.from_pretrained( "google/paligemma-3b-mix-448", revision="bfloat16", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", ).eval() self.processor = AutoProcessor.from_pretrained("google/paligemma-3b-mix-448") def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]: if "instances" not in data: raise ValueError( "The request body must contain a key `instances` with a list of instances." ) predictions = [] for input in data["instances"]: if "prompt" in input: input["text"] = input.pop("prompt") if any(key not in input for key in {"text", "image_url"}): raise ValueError( "The request body for each instance should contain both the `text` and the `image_url` key with a valid image URL." ) try: image = Image.open(requests.get(input["image_url"], stream=True).raw) # type: ignore except Exception as e: raise ValueError( f"The provided image URL ({input['image_url']}) cannot be downloaded (with exception {e}), make sure it's public and accessible." ) inputs = self.processor( text=input["text"], images=image, return_tensors="pt" ).to(self.model.device) input_len = inputs["input_ids"].shape[-1] with torch.inference_mode(): generation_kwargs = data.get( "generation_kwargs", {"max_new_tokens": 100, "do_sample": False} ) generation = self.model.generate(**inputs, **generation_kwargs) generation = generation[0][input_len:] response = self.processor.decode(generation, skip_special_tokens=True) predictions.append(response) return {"predictions": predictions}