File size: 1,846 Bytes
a58e1a5
 
 
38fda77
 
 
 
 
 
 
 
 
 
 
 
8d2a91f
 
 
 
38fda77
 
 
 
 
 
 
 
8d2a91f
 
38fda77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
language: zh
---

# Bert-base-chinese

## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)


## Model Details

### Model Description

This model has been pre-trained for Chinese, training and random input masking has been applied independently to word pieces (as in the original BERT paper).

- **Developed by:** HuggingFace team
- **Model Type:** Fill-Mask
- **Language(s):** Chinese
- **License:** [More Information needed]
- **Parent Model:** See the [BERT base uncased model](https://huggingface.co./bert-base-uncased) for more information about the BERT base model.

### Model Sources
- **Paper:** [BERT](https://arxiv.org/abs/1810.04805)

## Uses

#### Direct Use

This model can be used for masked language modeling 



## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**

Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).


## Training

#### Training Procedure
* **type_vocab_size:** 2
* **vocab_size:** 21128
* **num_hidden_layers:** 12

#### Training Data
[More Information Needed]

## Evaluation

#### Results

[More Information Needed]


## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")

model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese")

```