goldfish-models commited on
Commit
df1e868
·
verified ·
1 Parent(s): e5cd875

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - lus
6
+ datasets:
7
+ - allenai/MADLAD-400
8
+ - allenai/nllb
9
+ - cis-lmu/Glot500
10
+ library_name: transformers
11
+ pipeline_tag: text-generation
12
+ tags:
13
+ - goldfish
14
+
15
+ ---
16
+
17
+ # lus_latn_100mb
18
+
19
+ Goldfish is a suite of monolingual language models trained for 350 languages.
20
+ This model is the <b>Lushai</b> (Latin script) model trained on 100MB of data, after accounting for an estimated byte premium of 1.17; content-matched text in Lushai takes on average 1.17x as many UTF-8 bytes to encode as English.
21
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
22
+
23
+ Note: lus_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).
24
+
25
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
26
+
27
+ Training code and sample usage: https://github.com/tylerachang/goldfish
28
+
29
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
30
+
31
+ ## Model details:
32
+
33
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
34
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
35
+ Details for this model specifically:
36
+
37
+ * Architecture: gpt2
38
+ * Parameters: 124770816
39
+ * Maximum sequence length: 512 tokens
40
+ * Training text data (raw): 116.89MB
41
+ * Training text data (byte premium scaled): 100.005MB
42
+ * Training tokens: 29448192 (x10 epochs)
43
+ * Vocabulary size: 50000
44
+ * Compute cost: 1.50309809160192e+17 FLOPs or ~14.2 NVIDIA A6000 GPU hours
45
+
46
+ Training datasets (percentages prior to deduplication):
47
+ * 54.32199%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
48
+ * 39.88323%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
49
+ * 5.79478%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download)
50
+
51
+
52
+ ## Citation
53
+
54
+ If you use this model, please cite:
55
+
56
+ ```
57
+ @article{chang-etal-2024-goldfish,
58
+ title={Goldfish: Monolingual Language Models for 350 Languages},
59
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
60
+ journal={Preprint},
61
+ year={2024},
62
+ }
63
+ ```