File size: 4,167 Bytes
2cd2f71
 
 
 
 
 
d13dda2
 
2cd2f71
 
 
 
d13dda2
 
 
 
 
 
 
 
 
 
 
2cd2f71
 
 
 
 
 
 
d13dda2
2cd2f71
d13dda2
2cd2f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_book_corpus-ld
metrics:
- accuracy
model-index:
- name: distilbert_base_train_book_v2
  results:
  - task:
      name: Masked Language Modeling
      type: fill-mask
    dataset:
      name: gokulsrinivasagan/processed_book_corpus-ld
      type: gokulsrinivasagan/processed_book_corpus-ld
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7300233078924688
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_base_train_book_v2

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the gokulsrinivasagan/processed_book_corpus-ld dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2024
- Accuracy: 0.7300

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 160
- eval_batch_size: 160
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Accuracy |
|:-------------:|:-------:|:------:|:---------------:|:--------:|
| 5.604         | 0.7025  | 10000  | 5.4504          | 0.1650   |
| 4.6179        | 1.4051  | 20000  | 3.8277          | 0.3758   |
| 2.353         | 2.1076  | 30000  | 2.0408          | 0.5933   |
| 2.0739        | 2.8102  | 40000  | 1.7932          | 0.6316   |
| 1.9345        | 3.5127  | 50000  | 1.6618          | 0.6527   |
| 1.844         | 4.2153  | 60000  | 1.5829          | 0.6653   |
| 1.7874        | 4.9178  | 70000  | 1.5248          | 0.6750   |
| 1.737         | 5.6203  | 80000  | 1.4824          | 0.6819   |
| 1.7017        | 6.3229  | 90000  | 1.4506          | 0.6876   |
| 1.6703        | 7.0254  | 100000 | 1.4204          | 0.6921   |
| 1.6497        | 7.7280  | 110000 | 1.3988          | 0.6961   |
| 1.6245        | 8.4305  | 120000 | 1.3766          | 0.6996   |
| 1.6015        | 9.1331  | 130000 | 1.3628          | 0.7019   |
| 1.5882        | 9.8356  | 140000 | 1.3451          | 0.7052   |
| 1.5738        | 10.5381 | 150000 | 1.3310          | 0.7076   |
| 1.563         | 11.2407 | 160000 | 1.3214          | 0.7091   |
| 1.5473        | 11.9432 | 170000 | 1.3087          | 0.7113   |
| 1.5364        | 12.6458 | 180000 | 1.2944          | 0.7135   |
| 1.5257        | 13.3483 | 190000 | 1.2905          | 0.7146   |
| 1.5164        | 14.0509 | 200000 | 1.2789          | 0.7161   |
| 1.5071        | 14.7534 | 210000 | 1.2702          | 0.7176   |
| 1.4972        | 15.4560 | 220000 | 1.2618          | 0.7193   |
| 1.4915        | 16.1585 | 230000 | 1.2573          | 0.7201   |
| 1.4824        | 16.8610 | 240000 | 1.2515          | 0.7211   |
| 1.4748        | 17.5636 | 250000 | 1.2450          | 0.7223   |
| 1.4686        | 18.2661 | 260000 | 1.2389          | 0.7234   |
| 1.4649        | 18.9687 | 270000 | 1.2333          | 0.7243   |
| 1.4566        | 19.6712 | 280000 | 1.2285          | 0.7253   |
| 1.4529        | 20.3738 | 290000 | 1.2230          | 0.7261   |
| 1.4451        | 21.0763 | 300000 | 1.2189          | 0.7269   |
| 1.443         | 21.7788 | 310000 | 1.2136          | 0.7278   |
| 1.4357        | 22.4814 | 320000 | 1.2100          | 0.7284   |
| 1.4327        | 23.1839 | 330000 | 1.2068          | 0.7290   |
| 1.4309        | 23.8865 | 340000 | 1.2040          | 0.7295   |
| 1.4281        | 24.5890 | 350000 | 1.2005          | 0.7300   |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1