--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-4_H-128_A-2_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8130733944954128 --- # bert_uncased_L-4_H-128_A-2_sst2 This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4254 - Accuracy: 0.8131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.497 | 1.0 | 264 | 0.4757 | 0.7787 | | 0.3535 | 2.0 | 528 | 0.4270 | 0.8108 | | 0.2951 | 3.0 | 792 | 0.4281 | 0.8211 | | 0.2539 | 4.0 | 1056 | 0.4254 | 0.8131 | | 0.2259 | 5.0 | 1320 | 0.4344 | 0.8257 | | 0.2048 | 6.0 | 1584 | 0.4487 | 0.8314 | | 0.1892 | 7.0 | 1848 | 0.4820 | 0.8222 | | 0.1754 | 8.0 | 2112 | 0.4954 | 0.8349 | | 0.1643 | 9.0 | 2376 | 0.4869 | 0.8222 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3