--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-4_H-128_A-2_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8694286420974524 - name: F1 type: f1 value: 0.8237689868135536 --- # bert_uncased_L-4_H-128_A-2_qqp This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3084 - Accuracy: 0.8694 - F1: 0.8238 - Combined Score: 0.8466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.448 | 1.0 | 1422 | 0.3785 | 0.8204 | 0.7736 | 0.7970 | | 0.3757 | 2.0 | 2844 | 0.3562 | 0.8351 | 0.7980 | 0.8165 | | 0.3453 | 3.0 | 4266 | 0.3263 | 0.8521 | 0.8052 | 0.8286 | | 0.3226 | 4.0 | 5688 | 0.3198 | 0.8560 | 0.8090 | 0.8325 | | 0.3049 | 5.0 | 7110 | 0.3245 | 0.8552 | 0.8159 | 0.8355 | | 0.2903 | 6.0 | 8532 | 0.3136 | 0.8602 | 0.8207 | 0.8405 | | 0.277 | 7.0 | 9954 | 0.3188 | 0.8603 | 0.8200 | 0.8401 | | 0.2667 | 8.0 | 11376 | 0.3146 | 0.8648 | 0.8258 | 0.8453 | | 0.2551 | 9.0 | 12798 | 0.3239 | 0.8612 | 0.8240 | 0.8426 | | 0.2444 | 10.0 | 14220 | 0.3084 | 0.8694 | 0.8238 | 0.8466 | | 0.2358 | 11.0 | 15642 | 0.3224 | 0.8669 | 0.8296 | 0.8483 | | 0.2276 | 12.0 | 17064 | 0.3147 | 0.8699 | 0.8313 | 0.8506 | | 0.2191 | 13.0 | 18486 | 0.3185 | 0.8708 | 0.8332 | 0.8520 | | 0.2111 | 14.0 | 19908 | 0.3282 | 0.8721 | 0.8337 | 0.8529 | | 0.2048 | 15.0 | 21330 | 0.3194 | 0.8738 | 0.8306 | 0.8522 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3