File size: 2,224 Bytes
af54148
 
fd8e57c
 
af54148
 
 
 
fd8e57c
 
af54148
 
 
 
fd8e57c
 
 
 
 
 
 
 
 
 
 
 
af54148
 
 
 
 
 
 
fd8e57c
af54148
fd8e57c
 
af54148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-128_A-2
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_uncased_L-4_H-128_A-2_qnli
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QNLI
      type: glue
      args: qnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8121911037891268
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_uncased_L-4_H-128_A-2_qnli

This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4085
- Accuracy: 0.8122

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5299        | 1.0   | 410  | 0.4915          | 0.7730   |
| 0.4658        | 2.0   | 820  | 0.4281          | 0.8040   |
| 0.4407        | 3.0   | 1230 | 0.4085          | 0.8122   |
| 0.4184        | 4.0   | 1640 | 0.4172          | 0.8115   |
| 0.3983        | 5.0   | 2050 | 0.4166          | 0.8104   |
| 0.3799        | 6.0   | 2460 | 0.4329          | 0.8063   |
| 0.3614        | 7.0   | 2870 | 0.4182          | 0.8151   |
| 0.3438        | 8.0   | 3280 | 0.4378          | 0.8089   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3