--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation - accuracy model-index: - name: bert_uncased_L-4_H-128_A-2_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 - name: Accuracy type: accuracy value: 0.6912751793861389 --- # bert_uncased_L-4_H-128_A-2_cola This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6092 - Matthews Correlation: 0.0 - Accuracy: 0.6913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| | 0.6362 | 1.0 | 34 | 0.6191 | 0.0 | 0.6913 | | 0.608 | 2.0 | 68 | 0.6191 | 0.0 | 0.6913 | | 0.607 | 3.0 | 102 | 0.6168 | 0.0 | 0.6913 | | 0.6055 | 4.0 | 136 | 0.6145 | 0.0 | 0.6913 | | 0.6009 | 5.0 | 170 | 0.6107 | 0.0 | 0.6913 | | 0.5939 | 6.0 | 204 | 0.6092 | 0.0 | 0.6913 | | 0.5799 | 7.0 | 238 | 0.6168 | 0.0855 | 0.6951 | | 0.5679 | 8.0 | 272 | 0.6162 | 0.0848 | 0.6913 | | 0.5553 | 9.0 | 306 | 0.6236 | 0.0638 | 0.6855 | | 0.5361 | 10.0 | 340 | 0.6316 | 0.0837 | 0.6587 | | 0.5249 | 11.0 | 374 | 0.6383 | 0.1031 | 0.6548 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3