File size: 2,843 Bytes
43a7b4d c757bee 43a7b4d c757bee 43a7b4d c757bee 43a7b4d c757bee 43a7b4d c757bee 43a7b4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-128_A-2
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
- accuracy
model-index:
- name: bert_uncased_L-4_H-128_A-2_cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE COLA
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.0
- name: Accuracy
type: accuracy
value: 0.6912751793861389
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_L-4_H-128_A-2_cola
This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co./google/bert_uncased_L-4_H-128_A-2) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6092
- Matthews Correlation: 0.0
- Accuracy: 0.6913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:|
| 0.6362 | 1.0 | 34 | 0.6191 | 0.0 | 0.6913 |
| 0.608 | 2.0 | 68 | 0.6191 | 0.0 | 0.6913 |
| 0.607 | 3.0 | 102 | 0.6168 | 0.0 | 0.6913 |
| 0.6055 | 4.0 | 136 | 0.6145 | 0.0 | 0.6913 |
| 0.6009 | 5.0 | 170 | 0.6107 | 0.0 | 0.6913 |
| 0.5939 | 6.0 | 204 | 0.6092 | 0.0 | 0.6913 |
| 0.5799 | 7.0 | 238 | 0.6168 | 0.0855 | 0.6951 |
| 0.5679 | 8.0 | 272 | 0.6162 | 0.0848 | 0.6913 |
| 0.5553 | 9.0 | 306 | 0.6236 | 0.0638 | 0.6855 |
| 0.5361 | 10.0 | 340 | 0.6316 | 0.0837 | 0.6587 |
| 0.5249 | 11.0 | 374 | 0.6383 | 0.1031 | 0.6548 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|