--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-256_A-4 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-2_H-256_A-4_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.8228079809628409 --- # bert_uncased_L-2_H-256_A-4_qnli This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co./google/bert_uncased_L-2_H-256_A-4) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3967 - Accuracy: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.516 | 1.0 | 410 | 0.4330 | 0.8056 | | 0.4487 | 2.0 | 820 | 0.4267 | 0.8056 | | 0.4136 | 3.0 | 1230 | 0.3967 | 0.8228 | | 0.3815 | 4.0 | 1640 | 0.4232 | 0.8116 | | 0.3524 | 5.0 | 2050 | 0.4196 | 0.8170 | | 0.3243 | 6.0 | 2460 | 0.4250 | 0.8184 | | 0.2993 | 7.0 | 2870 | 0.4353 | 0.8146 | | 0.276 | 8.0 | 3280 | 0.4545 | 0.8098 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3