--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_olda_book_10_v1 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: bert_tiny_olda_book_10_v1_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.7894827878783358 --- # bert_tiny_olda_book_10_v1_stsb This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_olda_book_10_v1](https://huggingface.co./gokulsrinivasagan/bert_tiny_olda_book_10_v1) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.8800 - Pearson: 0.7899 - Spearmanr: 0.7895 - Combined Score: 0.7897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 3.0028 | 1.0 | 23 | 2.5219 | 0.1644 | 0.1637 | 0.1641 | | 1.7825 | 2.0 | 46 | 1.7353 | 0.6315 | 0.6561 | 0.6438 | | 1.2017 | 3.0 | 69 | 1.1421 | 0.7243 | 0.7369 | 0.7306 | | 0.8992 | 4.0 | 92 | 1.0970 | 0.7550 | 0.7677 | 0.7613 | | 0.6849 | 5.0 | 115 | 0.8800 | 0.7899 | 0.7895 | 0.7897 | | 0.5834 | 6.0 | 138 | 0.8918 | 0.7965 | 0.7978 | 0.7972 | | 0.4852 | 7.0 | 161 | 0.9756 | 0.7948 | 0.7965 | 0.7957 | | 0.4346 | 8.0 | 184 | 0.8957 | 0.7867 | 0.7860 | 0.7864 | | 0.3871 | 9.0 | 207 | 0.9086 | 0.7900 | 0.7882 | 0.7891 | | 0.3449 | 10.0 | 230 | 1.0219 | 0.7874 | 0.7899 | 0.7886 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1