--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_olda_book_10_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_olda_book_10_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8799901063566659 - name: F1 type: f1 value: 0.841251145138071 --- # bert_tiny_olda_book_10_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_olda_book_10_v1](https://huggingface.co./gokulsrinivasagan/bert_tiny_olda_book_10_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2816 - Accuracy: 0.8800 - F1: 0.8413 - Combined Score: 0.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3941 | 1.0 | 1422 | 0.3365 | 0.8496 | 0.7836 | 0.8166 | | 0.2912 | 2.0 | 2844 | 0.2905 | 0.8710 | 0.8323 | 0.8516 | | 0.2365 | 3.0 | 4266 | 0.2816 | 0.8800 | 0.8413 | 0.8606 | | 0.1917 | 4.0 | 5688 | 0.2965 | 0.8807 | 0.8349 | 0.8578 | | 0.157 | 5.0 | 7110 | 0.3086 | 0.8831 | 0.8474 | 0.8653 | | 0.1268 | 6.0 | 8532 | 0.3240 | 0.8849 | 0.8496 | 0.8672 | | 0.1053 | 7.0 | 9954 | 0.3513 | 0.8878 | 0.8496 | 0.8687 | | 0.0878 | 8.0 | 11376 | 0.3817 | 0.8864 | 0.8520 | 0.8692 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1