File size: 1,818 Bytes
59333d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-960h-fsc-h
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-960h-fsc-h

This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co./facebook/wav2vec2-base-960h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7220
- Accuracy: 0.2557

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.9959 | 120  | 1.7220          | 0.2557   |
| No log        | 2.0    | 241  | 1.7221          | 0.2557   |
| No log        | 2.9959 | 361  | 1.7188          | 0.2557   |
| No log        | 4.0    | 482  | 1.7197          | 0.2557   |
| No log        | 4.9959 | 602  | 1.7183          | 0.2557   |
| No log        | 6.0    | 723  | 1.7196          | 0.2557   |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1