--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.1267605633802817 --- # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5755 - Accuracy: 0.1268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.337 | 1.0 | 435 | 0.5755 | 0.1268 | | 0.3007 | 2.0 | 870 | 0.5814 | 0.1127 | | 0.2921 | 3.0 | 1305 | 0.6514 | 0.1127 | | 0.2857 | 4.0 | 1740 | 0.6644 | 0.0704 | | 0.2804 | 5.0 | 2175 | 0.6380 | 0.0986 | | 0.2751 | 6.0 | 2610 | 0.6571 | 0.0986 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2