End of training
Browse files- README.md +19 -4
- all_results.json +14 -0
- eval_results.json +9 -0
- logs/events.out.tfevents.1675782067.serv-3334.2664389.2 +3 -0
- train_results.json +8 -0
- trainer_state.json +115 -0
README.md
CHANGED
@@ -1,12 +1,27 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
model-index:
|
8 |
- name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256
|
16 |
|
17 |
-
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 1.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- glue
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
- name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Text Classification
|
16 |
+
type: text-classification
|
17 |
+
dataset:
|
18 |
+
name: GLUE QNLI
|
19 |
+
type: glue
|
20 |
+
args: qnli
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.5881383855024712
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256
|
31 |
|
32 |
+
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.1777
|
35 |
+
- Accuracy: 0.5881
|
36 |
|
37 |
## Model description
|
38 |
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"eval_accuracy": 0.5881383855024712,
|
4 |
+
"eval_loss": 1.1776939630508423,
|
5 |
+
"eval_runtime": 9.819,
|
6 |
+
"eval_samples": 5463,
|
7 |
+
"eval_samples_per_second": 556.368,
|
8 |
+
"eval_steps_per_second": 4.379,
|
9 |
+
"train_loss": 0.4690695021091805,
|
10 |
+
"train_runtime": 107868.9496,
|
11 |
+
"train_samples": 4250511,
|
12 |
+
"train_samples_per_second": 1970.22,
|
13 |
+
"train_steps_per_second": 15.393
|
14 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"eval_accuracy": 0.5881383855024712,
|
4 |
+
"eval_loss": 1.1776939630508423,
|
5 |
+
"eval_runtime": 9.819,
|
6 |
+
"eval_samples": 5463,
|
7 |
+
"eval_samples_per_second": 556.368,
|
8 |
+
"eval_steps_per_second": 4.379
|
9 |
+
}
|
logs/events.out.tfevents.1675782067.serv-3334.2664389.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a3a96209993c22a9f752d9cc6c2faa8fa54683a4c1c936babf34ff65bb74449
|
3 |
+
size 369
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 6.0,
|
3 |
+
"train_loss": 0.4690695021091805,
|
4 |
+
"train_runtime": 107868.9496,
|
5 |
+
"train_samples": 4250511,
|
6 |
+
"train_samples_per_second": 1970.22,
|
7 |
+
"train_steps_per_second": 15.393
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.1776939630508423,
|
3 |
+
"best_model_checkpoint": "mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_256/checkpoint-33208",
|
4 |
+
"epoch": 6.0,
|
5 |
+
"global_step": 199248,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.0,
|
12 |
+
"learning_rate": 4.9e-05,
|
13 |
+
"loss": 0.6984,
|
14 |
+
"step": 33208
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 1.0,
|
18 |
+
"eval_accuracy": 0.5881383855024712,
|
19 |
+
"eval_loss": 1.1776939630508423,
|
20 |
+
"eval_runtime": 9.8533,
|
21 |
+
"eval_samples_per_second": 554.434,
|
22 |
+
"eval_steps_per_second": 4.364,
|
23 |
+
"step": 33208
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 2.0,
|
27 |
+
"learning_rate": 4.8e-05,
|
28 |
+
"loss": 0.5294,
|
29 |
+
"step": 66416
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 2.0,
|
33 |
+
"eval_accuracy": 0.6011349075599487,
|
34 |
+
"eval_loss": 1.209543228149414,
|
35 |
+
"eval_runtime": 9.8475,
|
36 |
+
"eval_samples_per_second": 554.76,
|
37 |
+
"eval_steps_per_second": 4.367,
|
38 |
+
"step": 66416
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 3.0,
|
42 |
+
"learning_rate": 4.7e-05,
|
43 |
+
"loss": 0.4577,
|
44 |
+
"step": 99624
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 3.0,
|
48 |
+
"eval_accuracy": 0.5958264689730917,
|
49 |
+
"eval_loss": 1.227351188659668,
|
50 |
+
"eval_runtime": 9.8414,
|
51 |
+
"eval_samples_per_second": 555.104,
|
52 |
+
"eval_steps_per_second": 4.369,
|
53 |
+
"step": 99624
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 4.0,
|
57 |
+
"learning_rate": 4.600000000000001e-05,
|
58 |
+
"loss": 0.407,
|
59 |
+
"step": 132832
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 4.0,
|
63 |
+
"eval_accuracy": 0.5963756177924218,
|
64 |
+
"eval_loss": 1.2722785472869873,
|
65 |
+
"eval_runtime": 9.8374,
|
66 |
+
"eval_samples_per_second": 555.332,
|
67 |
+
"eval_steps_per_second": 4.371,
|
68 |
+
"step": 132832
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 5.0,
|
72 |
+
"learning_rate": 4.5e-05,
|
73 |
+
"loss": 0.373,
|
74 |
+
"step": 166040
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 5.0,
|
78 |
+
"eval_accuracy": 0.5938129233022149,
|
79 |
+
"eval_loss": 1.3357822895050049,
|
80 |
+
"eval_runtime": 9.8371,
|
81 |
+
"eval_samples_per_second": 555.345,
|
82 |
+
"eval_steps_per_second": 4.371,
|
83 |
+
"step": 166040
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 6.0,
|
87 |
+
"learning_rate": 4.4000000000000006e-05,
|
88 |
+
"loss": 0.349,
|
89 |
+
"step": 199248
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 6.0,
|
93 |
+
"eval_accuracy": 0.594911220940875,
|
94 |
+
"eval_loss": 1.2517368793487549,
|
95 |
+
"eval_runtime": 9.8396,
|
96 |
+
"eval_samples_per_second": 555.206,
|
97 |
+
"eval_steps_per_second": 4.37,
|
98 |
+
"step": 199248
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 6.0,
|
102 |
+
"step": 199248,
|
103 |
+
"total_flos": 6.717800781950484e+17,
|
104 |
+
"train_loss": 0.4690695021091805,
|
105 |
+
"train_runtime": 107868.9496,
|
106 |
+
"train_samples_per_second": 1970.22,
|
107 |
+
"train_steps_per_second": 15.393
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"max_steps": 1660400,
|
111 |
+
"num_train_epochs": 50,
|
112 |
+
"total_flos": 6.717800781950484e+17,
|
113 |
+
"trial_name": null,
|
114 |
+
"trial_params": null
|
115 |
+
}
|