update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1274
|
21 |
+
- Accuracy: 0.9902
|
22 |
+
- F1: 0.9929
|
23 |
+
- Combined Score: 0.9915
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-05
|
43 |
+
- train_batch_size: 128
|
44 |
+
- eval_batch_size: 128
|
45 |
+
- seed: 10
|
46 |
+
- distributed_type: multi-GPU
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
|
55 |
+
| 0.2964 | 1.0 | 1959 | 0.2026 | 0.9608 | 0.9718 | 0.9663 |
|
56 |
+
| 0.2307 | 2.0 | 3918 | 0.1943 | 0.9706 | 0.9789 | 0.9748 |
|
57 |
+
| 0.2221 | 3.0 | 5877 | 0.1874 | 0.9804 | 0.9858 | 0.9831 |
|
58 |
+
| 0.2163 | 4.0 | 7836 | 0.1703 | 0.9853 | 0.9894 | 0.9873 |
|
59 |
+
| 0.2115 | 5.0 | 9795 | 0.1805 | 0.9853 | 0.9894 | 0.9873 |
|
60 |
+
| 0.2071 | 6.0 | 11754 | 0.1682 | 0.9804 | 0.9859 | 0.9831 |
|
61 |
+
| 0.2036 | 7.0 | 13713 | 0.1583 | 0.9877 | 0.9911 | 0.9894 |
|
62 |
+
| 0.2007 | 8.0 | 15672 | 0.1628 | 0.9926 | 0.9947 | 0.9936 |
|
63 |
+
| 0.1985 | 9.0 | 17631 | 0.1548 | 0.9853 | 0.9894 | 0.9873 |
|
64 |
+
| 0.1965 | 10.0 | 19590 | 0.1583 | 0.9877 | 0.9911 | 0.9894 |
|
65 |
+
| 0.195 | 11.0 | 21549 | 0.1527 | 0.9902 | 0.9928 | 0.9915 |
|
66 |
+
| 0.1938 | 12.0 | 23508 | 0.1512 | 0.9902 | 0.9929 | 0.9915 |
|
67 |
+
| 0.1926 | 13.0 | 25467 | 0.1426 | 0.9951 | 0.9964 | 0.9958 |
|
68 |
+
| 0.1917 | 14.0 | 27426 | 0.1436 | 0.9951 | 0.9964 | 0.9958 |
|
69 |
+
| 0.191 | 15.0 | 29385 | 0.1503 | 0.9926 | 0.9946 | 0.9936 |
|
70 |
+
| 0.1901 | 16.0 | 31344 | 0.1461 | 0.9951 | 0.9964 | 0.9958 |
|
71 |
+
| 0.1894 | 17.0 | 33303 | 0.1498 | 0.9975 | 0.9982 | 0.9979 |
|
72 |
+
| 0.1888 | 18.0 | 35262 | 0.1402 | 0.9902 | 0.9929 | 0.9915 |
|
73 |
+
| 0.1882 | 19.0 | 37221 | 0.1420 | 0.9926 | 0.9946 | 0.9936 |
|
74 |
+
| 0.1876 | 20.0 | 39180 | 0.1346 | 0.9902 | 0.9929 | 0.9915 |
|
75 |
+
| 0.1871 | 21.0 | 41139 | 0.1396 | 0.9951 | 0.9964 | 0.9958 |
|
76 |
+
| 0.1867 | 22.0 | 43098 | 0.1443 | 0.9951 | 0.9964 | 0.9958 |
|
77 |
+
| 0.1862 | 23.0 | 45057 | 0.1346 | 0.9926 | 0.9947 | 0.9936 |
|
78 |
+
| 0.1857 | 24.0 | 47016 | 0.1361 | 0.9951 | 0.9964 | 0.9958 |
|
79 |
+
| 0.1854 | 25.0 | 48975 | 0.1318 | 0.9926 | 0.9947 | 0.9936 |
|
80 |
+
| 0.185 | 26.0 | 50934 | 0.1310 | 0.9902 | 0.9929 | 0.9915 |
|
81 |
+
| 0.1846 | 27.0 | 52893 | 0.1302 | 0.9926 | 0.9947 | 0.9936 |
|
82 |
+
| 0.1842 | 28.0 | 54852 | 0.1329 | 0.9951 | 0.9964 | 0.9958 |
|
83 |
+
| 0.1839 | 29.0 | 56811 | 0.1300 | 0.9902 | 0.9929 | 0.9915 |
|
84 |
+
| 0.1836 | 30.0 | 58770 | 0.1328 | 0.9902 | 0.9929 | 0.9915 |
|
85 |
+
| 0.1832 | 31.0 | 60729 | 0.1327 | 0.9902 | 0.9929 | 0.9915 |
|
86 |
+
| 0.1829 | 32.0 | 62688 | 0.1308 | 0.9902 | 0.9929 | 0.9915 |
|
87 |
+
| 0.1826 | 33.0 | 64647 | 0.1287 | 0.9902 | 0.9929 | 0.9915 |
|
88 |
+
| 0.1824 | 34.0 | 66606 | 0.1309 | 0.9926 | 0.9947 | 0.9936 |
|
89 |
+
| 0.1821 | 35.0 | 68565 | 0.1309 | 0.9926 | 0.9947 | 0.9936 |
|
90 |
+
| 0.1818 | 36.0 | 70524 | 0.1271 | 0.9902 | 0.9929 | 0.9915 |
|
91 |
+
| 0.1816 | 37.0 | 72483 | 0.1278 | 0.9877 | 0.9911 | 0.9894 |
|
92 |
+
| 0.1813 | 38.0 | 74442 | 0.1280 | 0.9902 | 0.9929 | 0.9915 |
|
93 |
+
| 0.1811 | 39.0 | 76401 | 0.1289 | 0.9902 | 0.9929 | 0.9915 |
|
94 |
+
| 0.1809 | 40.0 | 78360 | 0.1290 | 0.9877 | 0.9911 | 0.9894 |
|
95 |
+
| 0.1807 | 41.0 | 80319 | 0.1256 | 0.9877 | 0.9911 | 0.9894 |
|
96 |
+
| 0.1805 | 42.0 | 82278 | 0.1268 | 0.9926 | 0.9947 | 0.9936 |
|
97 |
+
| 0.1803 | 43.0 | 84237 | 0.1274 | 0.9926 | 0.9947 | 0.9936 |
|
98 |
+
| 0.1801 | 44.0 | 86196 | 0.1277 | 0.9926 | 0.9947 | 0.9936 |
|
99 |
+
| 0.1799 | 45.0 | 88155 | 0.1264 | 0.9926 | 0.9947 | 0.9936 |
|
100 |
+
| 0.1797 | 46.0 | 90114 | 0.1274 | 0.9902 | 0.9929 | 0.9915 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.26.0
|
106 |
+
- Pytorch 1.14.0a0+410ce96
|
107 |
+
- Datasets 2.9.0
|
108 |
+
- Tokenizers 0.13.2
|