gokuls commited on
Commit
8b57369
·
1 Parent(s): 60e848a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc
17
+
18
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1274
21
+ - Accuracy: 0.9902
22
+ - F1: 0.9929
23
+ - Combined Score: 0.9915
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 128
44
+ - eval_batch_size: 128
45
+ - seed: 10
46
+ - distributed_type: multi-GPU
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 50
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
55
+ | 0.2964 | 1.0 | 1959 | 0.2026 | 0.9608 | 0.9718 | 0.9663 |
56
+ | 0.2307 | 2.0 | 3918 | 0.1943 | 0.9706 | 0.9789 | 0.9748 |
57
+ | 0.2221 | 3.0 | 5877 | 0.1874 | 0.9804 | 0.9858 | 0.9831 |
58
+ | 0.2163 | 4.0 | 7836 | 0.1703 | 0.9853 | 0.9894 | 0.9873 |
59
+ | 0.2115 | 5.0 | 9795 | 0.1805 | 0.9853 | 0.9894 | 0.9873 |
60
+ | 0.2071 | 6.0 | 11754 | 0.1682 | 0.9804 | 0.9859 | 0.9831 |
61
+ | 0.2036 | 7.0 | 13713 | 0.1583 | 0.9877 | 0.9911 | 0.9894 |
62
+ | 0.2007 | 8.0 | 15672 | 0.1628 | 0.9926 | 0.9947 | 0.9936 |
63
+ | 0.1985 | 9.0 | 17631 | 0.1548 | 0.9853 | 0.9894 | 0.9873 |
64
+ | 0.1965 | 10.0 | 19590 | 0.1583 | 0.9877 | 0.9911 | 0.9894 |
65
+ | 0.195 | 11.0 | 21549 | 0.1527 | 0.9902 | 0.9928 | 0.9915 |
66
+ | 0.1938 | 12.0 | 23508 | 0.1512 | 0.9902 | 0.9929 | 0.9915 |
67
+ | 0.1926 | 13.0 | 25467 | 0.1426 | 0.9951 | 0.9964 | 0.9958 |
68
+ | 0.1917 | 14.0 | 27426 | 0.1436 | 0.9951 | 0.9964 | 0.9958 |
69
+ | 0.191 | 15.0 | 29385 | 0.1503 | 0.9926 | 0.9946 | 0.9936 |
70
+ | 0.1901 | 16.0 | 31344 | 0.1461 | 0.9951 | 0.9964 | 0.9958 |
71
+ | 0.1894 | 17.0 | 33303 | 0.1498 | 0.9975 | 0.9982 | 0.9979 |
72
+ | 0.1888 | 18.0 | 35262 | 0.1402 | 0.9902 | 0.9929 | 0.9915 |
73
+ | 0.1882 | 19.0 | 37221 | 0.1420 | 0.9926 | 0.9946 | 0.9936 |
74
+ | 0.1876 | 20.0 | 39180 | 0.1346 | 0.9902 | 0.9929 | 0.9915 |
75
+ | 0.1871 | 21.0 | 41139 | 0.1396 | 0.9951 | 0.9964 | 0.9958 |
76
+ | 0.1867 | 22.0 | 43098 | 0.1443 | 0.9951 | 0.9964 | 0.9958 |
77
+ | 0.1862 | 23.0 | 45057 | 0.1346 | 0.9926 | 0.9947 | 0.9936 |
78
+ | 0.1857 | 24.0 | 47016 | 0.1361 | 0.9951 | 0.9964 | 0.9958 |
79
+ | 0.1854 | 25.0 | 48975 | 0.1318 | 0.9926 | 0.9947 | 0.9936 |
80
+ | 0.185 | 26.0 | 50934 | 0.1310 | 0.9902 | 0.9929 | 0.9915 |
81
+ | 0.1846 | 27.0 | 52893 | 0.1302 | 0.9926 | 0.9947 | 0.9936 |
82
+ | 0.1842 | 28.0 | 54852 | 0.1329 | 0.9951 | 0.9964 | 0.9958 |
83
+ | 0.1839 | 29.0 | 56811 | 0.1300 | 0.9902 | 0.9929 | 0.9915 |
84
+ | 0.1836 | 30.0 | 58770 | 0.1328 | 0.9902 | 0.9929 | 0.9915 |
85
+ | 0.1832 | 31.0 | 60729 | 0.1327 | 0.9902 | 0.9929 | 0.9915 |
86
+ | 0.1829 | 32.0 | 62688 | 0.1308 | 0.9902 | 0.9929 | 0.9915 |
87
+ | 0.1826 | 33.0 | 64647 | 0.1287 | 0.9902 | 0.9929 | 0.9915 |
88
+ | 0.1824 | 34.0 | 66606 | 0.1309 | 0.9926 | 0.9947 | 0.9936 |
89
+ | 0.1821 | 35.0 | 68565 | 0.1309 | 0.9926 | 0.9947 | 0.9936 |
90
+ | 0.1818 | 36.0 | 70524 | 0.1271 | 0.9902 | 0.9929 | 0.9915 |
91
+ | 0.1816 | 37.0 | 72483 | 0.1278 | 0.9877 | 0.9911 | 0.9894 |
92
+ | 0.1813 | 38.0 | 74442 | 0.1280 | 0.9902 | 0.9929 | 0.9915 |
93
+ | 0.1811 | 39.0 | 76401 | 0.1289 | 0.9902 | 0.9929 | 0.9915 |
94
+ | 0.1809 | 40.0 | 78360 | 0.1290 | 0.9877 | 0.9911 | 0.9894 |
95
+ | 0.1807 | 41.0 | 80319 | 0.1256 | 0.9877 | 0.9911 | 0.9894 |
96
+ | 0.1805 | 42.0 | 82278 | 0.1268 | 0.9926 | 0.9947 | 0.9936 |
97
+ | 0.1803 | 43.0 | 84237 | 0.1274 | 0.9926 | 0.9947 | 0.9936 |
98
+ | 0.1801 | 44.0 | 86196 | 0.1277 | 0.9926 | 0.9947 | 0.9936 |
99
+ | 0.1799 | 45.0 | 88155 | 0.1264 | 0.9926 | 0.9947 | 0.9936 |
100
+ | 0.1797 | 46.0 | 90114 | 0.1274 | 0.9902 | 0.9929 | 0.9915 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.26.0
106
+ - Pytorch 1.14.0a0+410ce96
107
+ - Datasets 2.9.0
108
+ - Tokenizers 0.13.2