gokuls commited on
Commit
3411635
·
1 Parent(s): fead266

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: mobilebert_add_GLUE_Experiment_mrpc_256
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: glue
18
+ type: glue
19
+ config: mrpc
20
+ split: validation
21
+ args: mrpc
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.6813725490196079
26
+ - name: F1
27
+ type: f1
28
+ value: 0.8104956268221574
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # mobilebert_add_GLUE_Experiment_mrpc_256
35
+
36
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the glue dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.6733
39
+ - Accuracy: 0.6814
40
+ - F1: 0.8105
41
+ - Combined Score: 0.7459
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 128
62
+ - eval_batch_size: 128
63
+ - seed: 10
64
+ - distributed_type: multi-GPU
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 50
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
72
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
73
+ | 0.6419 | 1.0 | 29 | 0.6266 | 0.6838 | 0.8122 | 0.7480 |
74
+ | 0.6297 | 2.0 | 58 | 0.6236 | 0.6838 | 0.8122 | 0.7480 |
75
+ | 0.6307 | 3.0 | 87 | 0.6241 | 0.6838 | 0.8122 | 0.7480 |
76
+ | 0.63 | 4.0 | 116 | 0.6243 | 0.6838 | 0.8122 | 0.7480 |
77
+ | 0.6283 | 5.0 | 145 | 0.6219 | 0.6838 | 0.8122 | 0.7480 |
78
+ | 0.6243 | 6.0 | 174 | 0.6207 | 0.6838 | 0.8122 | 0.7480 |
79
+ | 0.6206 | 7.0 | 203 | 0.6346 | 0.6838 | 0.8122 | 0.7480 |
80
+ | 0.6034 | 8.0 | 232 | 0.6519 | 0.6348 | 0.7545 | 0.6947 |
81
+ | 0.5877 | 9.0 | 261 | 0.6375 | 0.6838 | 0.8122 | 0.7480 |
82
+ | 0.5722 | 10.0 | 290 | 0.6446 | 0.6299 | 0.7504 | 0.6902 |
83
+ | 0.5619 | 11.0 | 319 | 0.6733 | 0.6814 | 0.8105 | 0.7459 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.26.0
89
+ - Pytorch 1.14.0a0+410ce96
90
+ - Datasets 2.8.0
91
+ - Tokenizers 0.13.2