File size: 2,881 Bytes
c27223a 1f3f6a7 c27223a 1f3f6a7 c27223a 1f3f6a7 c27223a 1f3f6a7 c27223a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: mobilebert_add_GLUE_Experiment_mrpc_128
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6838235294117647
- name: F1
type: f1
value: 0.8122270742358079
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_mrpc_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6231
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6471 | 1.0 | 29 | 0.6239 | 0.6838 | 0.8122 | 0.7480 |
| 0.6304 | 2.0 | 58 | 0.6242 | 0.6838 | 0.8122 | 0.7480 |
| 0.6314 | 3.0 | 87 | 0.6249 | 0.6838 | 0.8122 | 0.7480 |
| 0.6307 | 4.0 | 116 | 0.6250 | 0.6838 | 0.8122 | 0.7480 |
| 0.6298 | 5.0 | 145 | 0.6233 | 0.6838 | 0.8122 | 0.7480 |
| 0.6283 | 6.0 | 174 | 0.6233 | 0.6838 | 0.8122 | 0.7480 |
| 0.6283 | 7.0 | 203 | 0.6231 | 0.6838 | 0.8122 | 0.7480 |
| 0.6224 | 8.0 | 232 | 0.6265 | 0.6838 | 0.8122 | 0.7480 |
| 0.6042 | 9.0 | 261 | 0.6355 | 0.6838 | 0.8122 | 0.7480 |
| 0.5862 | 10.0 | 290 | 0.6303 | 0.6838 | 0.8122 | 0.7480 |
| 0.5717 | 11.0 | 319 | 0.6515 | 0.6324 | 0.7525 | 0.6924 |
| 0.5641 | 12.0 | 348 | 0.6412 | 0.6838 | 0.8122 | 0.7480 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|