File size: 2,697 Bytes
68ef134 e69c81b 68ef134 e69c81b 68ef134 e69c81b 68ef134 e69c81b 68ef134 e69c81b 68ef134 e69c81b 68ef134 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: mobilebert_add_GLUE_Experiment_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6838235294117647
- name: F1
type: f1
value: 0.8122270742358079
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_mrpc
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6197
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6387 | 1.0 | 29 | 0.6245 | 0.6838 | 0.8122 | 0.7480 |
| 0.6307 | 2.0 | 58 | 0.6234 | 0.6838 | 0.8122 | 0.7480 |
| 0.6307 | 3.0 | 87 | 0.6233 | 0.6838 | 0.8122 | 0.7480 |
| 0.6295 | 4.0 | 116 | 0.6231 | 0.6838 | 0.8122 | 0.7480 |
| 0.6261 | 5.0 | 145 | 0.6197 | 0.6838 | 0.8122 | 0.7480 |
| 0.6147 | 6.0 | 174 | 0.6344 | 0.6838 | 0.8122 | 0.7480 |
| 0.6209 | 7.0 | 203 | 0.6398 | 0.6838 | 0.8122 | 0.7480 |
| 0.6007 | 8.0 | 232 | 0.6338 | 0.6324 | 0.7517 | 0.6920 |
| 0.5795 | 9.0 | 261 | 0.6377 | 0.625 | 0.7429 | 0.6839 |
| 0.5712 | 10.0 | 290 | 0.6290 | 0.6814 | 0.8036 | 0.7425 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|