--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_wnli_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- # mobilebert_add_GLUE_Experiment_logit_kd_wnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3455 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3469 | 1.0 | 5 | 0.3456 | 0.5634 | | 0.3467 | 2.0 | 10 | 0.3458 | 0.5634 | | 0.3466 | 3.0 | 15 | 0.3459 | 0.5634 | | 0.3466 | 4.0 | 20 | 0.3457 | 0.5634 | | 0.3466 | 5.0 | 25 | 0.3456 | 0.5634 | | 0.3466 | 6.0 | 30 | 0.3456 | 0.5634 | | 0.3466 | 7.0 | 35 | 0.3455 | 0.5634 | | 0.3466 | 8.0 | 40 | 0.3458 | 0.5634 | | 0.3466 | 9.0 | 45 | 0.3457 | 0.5634 | | 0.3465 | 10.0 | 50 | 0.3458 | 0.5634 | | 0.3466 | 11.0 | 55 | 0.3460 | 0.5634 | | 0.3465 | 12.0 | 60 | 0.3460 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2