--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.756987385604749 - name: F1 type: f1 value: 0.604929832321364 --- # mobilebert_add_GLUE_Experiment_logit_kd_qqp This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.8079 - Accuracy: 0.7570 - F1: 0.6049 - Combined Score: 0.6810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:--------------------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 1.2837 | 1.0 | 2843 | 1.2201 | 0.6318 | 0.0 | 0.3159 | | 1.076 | 2.0 | 5686 | 0.8477 | 0.7443 | 0.5855 | 0.6649 | | 0.866 | 3.0 | 8529 | 0.8217 | 0.7518 | 0.5924 | 0.6721 | | 0.8317 | 4.0 | 11372 | 0.8136 | 0.7565 | 0.6243 | 0.6904 | | 0.8122 | 5.0 | 14215 | 0.8126 | 0.7588 | 0.6352 | 0.6970 | | 0.799 | 6.0 | 17058 | 0.8079 | 0.7570 | 0.6049 | 0.6810 | | 386581134871678353408.0000 | 7.0 | 19901 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 8.0 | 22744 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 9.0 | 25587 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 10.0 | 28430 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 11.0 | 31273 | nan | 0.6318 | 0.0 | 0.3159 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2