gokuls commited on
Commit
d8dd20b
·
1 Parent(s): 4720fe7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: mobilebert_add_GLUE_Experiment_logit_kd_qnli
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: qnli
19
+ split: validation
20
+ args: qnli
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.5053999633900788
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # mobilebert_add_GLUE_Experiment_logit_kd_qnli
31
+
32
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the glue dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.0611
35
+ - Accuracy: 0.5054
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 128
56
+ - eval_batch_size: 128
57
+ - seed: 10
58
+ - distributed_type: multi-GPU
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 50
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 1.1397 | 1.0 | 819 | 1.0612 | 0.5054 |
68
+ | 1.1394 | 2.0 | 1638 | 1.0611 | 0.5054 |
69
+ | 1.1393 | 3.0 | 2457 | 1.0616 | 0.5054 |
70
+ | 1.1393 | 4.0 | 3276 | 1.0610 | 0.5054 |
71
+ | 1.1394 | 5.0 | 4095 | 1.0612 | 0.5054 |
72
+ | 1.1393 | 6.0 | 4914 | 1.0613 | 0.5054 |
73
+ | 1.1393 | 7.0 | 5733 | 1.0614 | 0.5054 |
74
+ | 1.1393 | 8.0 | 6552 | 1.0613 | 0.5054 |
75
+ | 1.1392 | 9.0 | 7371 | 1.0611 | 0.5054 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.26.0
81
+ - Pytorch 1.14.0a0+410ce96
82
+ - Datasets 2.9.0
83
+ - Tokenizers 0.13.2