File size: 2,314 Bytes
ccaa54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: google/bert_uncased_L-6_H-256_A-4
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: bert_uncased_L-6_H-256_A-4_emotion
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: emotion
      type: emotion
      config: split
      split: validation
      args: split
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.938
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_uncased_L-6_H-256_A-4_emotion

This model is a fine-tuned version of [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co./google/bert_uncased_L-6_H-256_A-4) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1706
- Accuracy: 0.938

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0209        | 1.0   | 250  | 0.4902          | 0.872    |
| 0.3573        | 2.0   | 500  | 0.2427          | 0.9235   |
| 0.2124        | 3.0   | 750  | 0.1885          | 0.9295   |
| 0.1605        | 4.0   | 1000 | 0.1815          | 0.9335   |
| 0.137         | 5.0   | 1250 | 0.1623          | 0.9355   |
| 0.1122        | 6.0   | 1500 | 0.1695          | 0.934    |
| 0.0968        | 7.0   | 1750 | 0.1671          | 0.935    |
| 0.0902        | 8.0   | 2000 | 0.1702          | 0.933    |
| 0.08          | 9.0   | 2250 | 0.1684          | 0.937    |
| 0.0724        | 10.0  | 2500 | 0.1706          | 0.938    |


### Framework versions

- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1