File size: 2,314 Bytes
ccaa54c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: google/bert_uncased_L-6_H-256_A-4
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: bert_uncased_L-6_H-256_A-4_emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.938
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_uncased_L-6_H-256_A-4_emotion
This model is a fine-tuned version of [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co./google/bert_uncased_L-6_H-256_A-4) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1706
- Accuracy: 0.938
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0209 | 1.0 | 250 | 0.4902 | 0.872 |
| 0.3573 | 2.0 | 500 | 0.2427 | 0.9235 |
| 0.2124 | 3.0 | 750 | 0.1885 | 0.9295 |
| 0.1605 | 4.0 | 1000 | 0.1815 | 0.9335 |
| 0.137 | 5.0 | 1250 | 0.1623 | 0.9355 |
| 0.1122 | 6.0 | 1500 | 0.1695 | 0.934 |
| 0.0968 | 7.0 | 1750 | 0.1671 | 0.935 |
| 0.0902 | 8.0 | 2000 | 0.1702 | 0.933 |
| 0.08 | 9.0 | 2250 | 0.1684 | 0.937 |
| 0.0724 | 10.0 | 2500 | 0.1706 | 0.938 |
### Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
|