--- license: cc-by-nc-4.0 base_model: MBZUAI/LaMini-Flan-T5-248M tags: - generated_from_trainer metrics: - rouge model-index: - name: Lamini-Prompt-Enchance results: [] --- # Usage ```python from transformers import pipeline # load model and tokenizer from huggingface hub with pipeline enhancer = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=0) prompt = "A blue-tinted bedroom scene, surreal and serene, with a mysterious reflected interior." prefix = "Enhance the description: " # enhance prompt res = enhancer(prefix + prompt) print(res[0]['summary_text']) # A surreal and serene bedroom scene with a mysterious mirrored interior, # awash in blue and green hues. # The room is adorned with intricate patterns and a mirrored wall, # creating a sense of mystery and tranquility. ``` # Lamini-Prompt-Enchance This model is a fine-tuned version of [MBZUAI/LaMini-Flan-T5-248M](https://huggingface.co./MBZUAI/LaMini-Flan-T5-248M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0195 - Rouge1: 31.5042 - Rouge2: 13.2633 - Rougel: 26.4176 - Rougelsum: 28.4846 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 115 | 2.1369 | 31.6298 | 13.2671 | 26.4264 | 28.5472 | 19.0 | | No log | 2.0 | 230 | 2.0733 | 31.4969 | 13.2677 | 26.5009 | 28.4785 | 19.0 | | No log | 3.0 | 345 | 2.0405 | 31.4735 | 13.01 | 26.1931 | 28.3299 | 19.0 | | No log | 4.0 | 460 | 2.0250 | 31.4761 | 13.2096 | 26.3479 | 28.3059 | 19.0 | | 2.2448 | 5.0 | 575 | 2.0195 | 31.5042 | 13.2633 | 26.4176 | 28.4846 | 19.0 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1