--- language: ko tags: - bart license: MIT --- # Korean News Summarization Model ## How to use ```python import torch from transformers import PreTrainedTokenizerFast from transformers import BartForConditionalGeneration tokenizer = PreTrainedTokenizerFast.from_pretrained( 'gogamza/kobart-summarization', bos_token='', eos_token='', unk_token='', pad_token='', mask_token='') model = BartForConditionalGeneration.from_pretrained('gogamza/kobart-summarization') text = "과거를 떠올려보자. 방송을 보던 우리의 모습을..." raw_input_ids = tokenizer.encode(text) input_ids = [tokenizer.bos_token_id] + \\ raw_input_ids + [tokenizer.eos_token_id] summary_ids = model.generate(torch.tensor([input_ids]), max_length=150, early_stopping=False, num_beams=5, repetition_penalty=1.0, eos_token_id=tokenizer.eos_token_id) summ_text = tokenizer.batch_decode(summary_ids.tolist(), skip_special_tokens=True)[0] ```