_base_ = ['./minkunet18_w32_torchsparse_8xb2-amp-15e_semantickitti.py'] model = dict( backbone=dict( base_channels=16, encoder_channels=[16, 32, 64, 128], decoder_channels=[128, 64, 48, 48]), decode_head=dict(channels=48)) # NOTE: Due to TorchSparse backend, the model performance is relatively # dependent on random seeds, and if random seeds are not specified the # model performance will be different (± 1.5 mIoU). randomness = dict(seed=1588147245)