--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: mt5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 2.8351 --- # mt5-small-finetuned-xsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 2.8351 - Rouge2: 0.3143 - Rougel: 2.6488 - Rougelsum: 2.6463 - Gen Len: 4.9416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | nan | 1.0 | 12753 | nan | 2.8351 | 0.3143 | 2.6488 | 2.6463 | 4.9416 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3