File size: 1,803 Bytes
51d855a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b7410e
51d855a
 
 
 
 
 
 
 
 
 
1b7410e
 
 
 
fc6f730
51d855a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b7410e
 
51d855a
 
 
 
 
 
 
 
1b7410e
 
 
51d855a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-xsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: xsum
      type: xsum
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 2.8351
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-xsum

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 2.8351
- Rouge2: 0.3143
- Rougel: 2.6488
- Rougelsum: 2.6463
- Gen Len: 4.9416

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| nan           | 1.0   | 12753 | nan             | 2.8351 | 0.3143 | 2.6488 | 2.6463    | 4.9416  |


### Framework versions

- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3