File size: 1,441 Bytes
6b7b4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: bart-large-finetuned-filtered-spotify-podcast-summ
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# bart-large-finetuned-filtered-spotify-podcast-summ

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2967
- Validation Loss: 2.8716
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.0440     | 2.8733          | 0     |
| 2.6085     | 2.8549          | 1     |
| 2.2967     | 2.8716          | 2     |


### Framework versions

- Transformers 4.19.4
- TensorFlow 2.9.1
- Datasets 2.3.1
- Tokenizers 0.12.1