p-christ TheBloke commited on
Commit
dde52cb
·
verified ·
0 Parent(s):

Duplicate from TheBloke/Starling-LM-7B-alpha-AWQ

Browse files

Co-authored-by: Tom Jobbins <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: berkeley-nest/Starling-LM-7B-alpha
3
+ datasets:
4
+ - berkeley-nest/Nectar
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: cc-by-nc-4.0
10
+ model_creator: Berkeley-Nest
11
+ model_name: Starling LM 7B Alpha
12
+ model_type: mistral
13
+ prompt_template: 'GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
14
+
15
+ '
16
+ quantized_by: TheBloke
17
+ tags:
18
+ - reward model
19
+ - RLHF
20
+ - RLAIF
21
+ ---
22
+ <!-- markdownlint-disable MD041 -->
23
+
24
+ <!-- header start -->
25
+ <!-- 200823 -->
26
+ <div style="width: auto; margin-left: auto; margin-right: auto">
27
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
28
+ </div>
29
+ <div style="display: flex; justify-content: space-between; width: 100%;">
30
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
31
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
32
+ </div>
33
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
35
+ </div>
36
+ </div>
37
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
38
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
39
+ <!-- header end -->
40
+
41
+ # Starling LM 7B Alpha - AWQ
42
+ - Model creator: [Berkeley-Nest](https://huggingface.co/berkeley-nest)
43
+ - Original model: [Starling LM 7B Alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
44
+
45
+ <!-- description start -->
46
+ ## Description
47
+
48
+ This repo contains AWQ model files for [Berkeley-Nest's Starling LM 7B Alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha).
49
+
50
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
51
+
52
+
53
+ ### About AWQ
54
+
55
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
56
+
57
+ It is supported by:
58
+
59
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
60
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
61
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
62
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
63
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
64
+
65
+ <!-- description end -->
66
+ <!-- repositories-available start -->
67
+ ## Repositories available
68
+
69
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-AWQ)
70
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ)
71
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GGUF)
72
+ * [Berkeley-Nest's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
73
+ <!-- repositories-available end -->
74
+
75
+ <!-- prompt-template start -->
76
+ ## Prompt template: OpenChat
77
+
78
+ ```
79
+ GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
80
+
81
+ ```
82
+
83
+ <!-- prompt-template end -->
84
+
85
+
86
+ <!-- README_AWQ.md-provided-files start -->
87
+ ## Provided files, and AWQ parameters
88
+
89
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
90
+
91
+ Models are released as sharded safetensors files.
92
+
93
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
94
+ | ------ | ---- | -- | ----------- | ------- | ---- |
95
+ | [main](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
96
+
97
+ <!-- README_AWQ.md-provided-files end -->
98
+
99
+ <!-- README_AWQ.md-text-generation-webui start -->
100
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
101
+
102
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
103
+
104
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
105
+
106
+ 1. Click the **Model tab**.
107
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Starling-LM-7B-alpha-AWQ`.
108
+ 3. Click **Download**.
109
+ 4. The model will start downloading. Once it's finished it will say "Done".
110
+ 5. In the top left, click the refresh icon next to **Model**.
111
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Starling-LM-7B-alpha-AWQ`
112
+ 7. Select **Loader: AutoAWQ**.
113
+ 8. Click Load, and the model will load and is now ready for use.
114
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
115
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
116
+ <!-- README_AWQ.md-text-generation-webui end -->
117
+
118
+ <!-- README_AWQ.md-use-from-vllm start -->
119
+ ## Multi-user inference server: vLLM
120
+
121
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
122
+
123
+ - Please ensure you are using vLLM version 0.2 or later.
124
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
125
+
126
+ For example:
127
+
128
+ ```shell
129
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Starling-LM-7B-alpha-AWQ --quantization awq --dtype auto
130
+ ```
131
+
132
+ - When using vLLM from Python code, again set `quantization=awq`.
133
+
134
+ For example:
135
+
136
+ ```python
137
+ from vllm import LLM, SamplingParams
138
+
139
+ prompts = [
140
+ "Tell me about AI",
141
+ "Write a story about llamas",
142
+ "What is 291 - 150?",
143
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
144
+ ]
145
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
146
+ '''
147
+
148
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
149
+
150
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
151
+
152
+ llm = LLM(model="TheBloke/Starling-LM-7B-alpha-AWQ", quantization="awq", dtype="auto")
153
+
154
+ outputs = llm.generate(prompts, sampling_params)
155
+
156
+ # Print the outputs.
157
+ for output in outputs:
158
+ prompt = output.prompt
159
+ generated_text = output.outputs[0].text
160
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
161
+ ```
162
+ <!-- README_AWQ.md-use-from-vllm start -->
163
+
164
+ <!-- README_AWQ.md-use-from-tgi start -->
165
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
166
+
167
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
168
+
169
+ Example Docker parameters:
170
+
171
+ ```shell
172
+ --model-id TheBloke/Starling-LM-7B-alpha-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
173
+ ```
174
+
175
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
176
+
177
+ ```shell
178
+ pip3 install huggingface-hub
179
+ ```
180
+
181
+ ```python
182
+ from huggingface_hub import InferenceClient
183
+
184
+ endpoint_url = "https://your-endpoint-url-here"
185
+
186
+ prompt = "Tell me about AI"
187
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
188
+ '''
189
+
190
+ client = InferenceClient(endpoint_url)
191
+ response = client.text_generation(prompt,
192
+ max_new_tokens=128,
193
+ do_sample=True,
194
+ temperature=0.7,
195
+ top_p=0.95,
196
+ top_k=40,
197
+ repetition_penalty=1.1)
198
+
199
+ print(f"Model output: ", response)
200
+ ```
201
+ <!-- README_AWQ.md-use-from-tgi end -->
202
+
203
+ <!-- README_AWQ.md-use-from-python start -->
204
+ ## Inference from Python code using Transformers
205
+
206
+ ### Install the necessary packages
207
+
208
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
209
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
210
+
211
+ ```shell
212
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
213
+ ```
214
+
215
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
216
+
217
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
218
+
219
+ ```shell
220
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
221
+ ```
222
+
223
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
224
+
225
+ ```shell
226
+ pip3 uninstall -y autoawq
227
+ git clone https://github.com/casper-hansen/AutoAWQ
228
+ cd AutoAWQ
229
+ pip3 install .
230
+ ```
231
+
232
+ ### Transformers example code (requires Transformers 4.35.0 and later)
233
+
234
+ ```python
235
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
236
+
237
+ model_name_or_path = "TheBloke/Starling-LM-7B-alpha-AWQ"
238
+
239
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
240
+ model = AutoModelForCausalLM.from_pretrained(
241
+ model_name_or_path,
242
+ low_cpu_mem_usage=True,
243
+ device_map="cuda:0"
244
+ )
245
+
246
+ # Using the text streamer to stream output one token at a time
247
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
248
+
249
+ prompt = "Tell me about AI"
250
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
251
+ '''
252
+
253
+ # Convert prompt to tokens
254
+ tokens = tokenizer(
255
+ prompt_template,
256
+ return_tensors='pt'
257
+ ).input_ids.cuda()
258
+
259
+ generation_params = {
260
+ "do_sample": True,
261
+ "temperature": 0.7,
262
+ "top_p": 0.95,
263
+ "top_k": 40,
264
+ "max_new_tokens": 512,
265
+ "repetition_penalty": 1.1
266
+ }
267
+
268
+ # Generate streamed output, visible one token at a time
269
+ generation_output = model.generate(
270
+ tokens,
271
+ streamer=streamer,
272
+ **generation_params
273
+ )
274
+
275
+ # Generation without a streamer, which will include the prompt in the output
276
+ generation_output = model.generate(
277
+ tokens,
278
+ **generation_params
279
+ )
280
+
281
+ # Get the tokens from the output, decode them, print them
282
+ token_output = generation_output[0]
283
+ text_output = tokenizer.decode(token_output)
284
+ print("model.generate output: ", text_output)
285
+
286
+ # Inference is also possible via Transformers' pipeline
287
+ from transformers import pipeline
288
+
289
+ pipe = pipeline(
290
+ "text-generation",
291
+ model=model,
292
+ tokenizer=tokenizer,
293
+ **generation_params
294
+ )
295
+
296
+ pipe_output = pipe(prompt_template)[0]['generated_text']
297
+ print("pipeline output: ", pipe_output)
298
+
299
+ ```
300
+ <!-- README_AWQ.md-use-from-python end -->
301
+
302
+ <!-- README_AWQ.md-compatibility start -->
303
+ ## Compatibility
304
+
305
+ The files provided are tested to work with:
306
+
307
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
308
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
309
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
310
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
311
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
312
+
313
+ <!-- README_AWQ.md-compatibility end -->
314
+
315
+ <!-- footer start -->
316
+ <!-- 200823 -->
317
+ ## Discord
318
+
319
+ For further support, and discussions on these models and AI in general, join us at:
320
+
321
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
322
+
323
+ ## Thanks, and how to contribute
324
+
325
+ Thanks to the [chirper.ai](https://chirper.ai) team!
326
+
327
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
328
+
329
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
330
+
331
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
332
+
333
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
334
+
335
+ * Patreon: https://patreon.com/TheBlokeAI
336
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
337
+
338
+ **Special thanks to**: Aemon Algiz.
339
+
340
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
341
+
342
+
343
+ Thank you to all my generous patrons and donaters!
344
+
345
+ And thank you again to a16z for their generous grant.
346
+
347
+ <!-- footer end -->
348
+
349
+ # Original model card: Berkeley-Nest's Starling LM 7B Alpha
350
+
351
+ # Starling-RM-7B-alpha
352
+
353
+ <!-- Provide a quick summary of what the model is/does. -->
354
+
355
+ - **Developed by:** Banghua Zhu * , Evan Frick * , Tianhao Wu * , Hanlin Zhu and Jiantao Jiao.
356
+ - **Model type:** Language Model finetuned with RLHF / RLAIF
357
+ - **License:** Non commercial license
358
+ - **Finetuned from model:** [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5) (based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1))
359
+
360
+
361
+
362
+ We introduce Starling-7B, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). The model harnesses the power of our new GPT-4 labeled ranking dataset, [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), and our new reward training and policy tuning pipeline. Starling-7B-alpha scores 8.09 in MT Bench with GPT-4 as a judge, outperforming every model to date on MT-Bench except for OpenAI's GPT-4 and GPT-4 Turbo. We release the ranking dataset [Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), the reward model [Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and the language model [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on HuggingFace, and an online demo in LMSYS [Chatbot Arena](https://chat.lmsys.org). Stay tuned for our forthcoming code and paper, which will provide more details on the whole process.
363
+
364
+ Starling-LM-7B-alpha is a language model trained from [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5) with reward model [berkeley-nest/Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and policy optimization method [advantage-induced policy alignment (APA)](https://arxiv.org/abs/2306.02231). The evaluation results are listed below.
365
+
366
+
367
+ | Model | Tuning Method | MT Bench | AlpacaEval | MMLU |
368
+ |-----------------------|------------------|----------|------------|------|
369
+ | GPT-4-Turbo | ? | 9.32 | 97.70 | |
370
+ | GPT-4 | SFT + PPO | 8.99 | 95.28 | 86.4 |
371
+ | **Starling-7B** | C-RLFT + APA | 8.09 | 91.99 | 63.9 |
372
+ | Claude-2 | ? | 8.06 | 91.36 | 78.5 |
373
+ | GPT-3.5-Turbo | ? | 7.94 | 89.37 | 70 |
374
+ | Claude-1 | ? | 7.9 | 88.39 | 77 |
375
+ | Tulu-2-dpo-70b | SFT + DPO | 7.89 | 95.1 | |
376
+ | Openchat-3.5 | C-RLFT | 7.81 | 88.51 | 64.3 |
377
+ | Zephyr-7B-beta | SFT + DPO | 7.34 | 90.60 | 61.4 |
378
+ | Llama-2-70b-chat-hf | SFT + PPO | 6.86 | 92.66 | 63 |
379
+ | Neural-chat-7b-v3-1 | SFT + DPO | 6.84 | 84.53 | 62.4 |
380
+ | Tulu-2-dpo-7b | SFT + DPO | 6.29 | 85.1 | |
381
+
382
+
383
+
384
+ For more detailed discussions, please check out our [blog post](https://starling.cs.berkeley.edu), and stay tuned for our upcoming code and paper!
385
+ <!-- Provide the basic links for the model. -->
386
+
387
+ - **Blog:** https://starling.cs.berkeley.edu/
388
+ - **Paper:** Coming soon!
389
+ - **Code:** Coming soon!
390
+
391
+
392
+
393
+ ## Uses
394
+
395
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
396
+ Our model follows the exact chat template and usage as [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5). Please refer to their model card for more details.
397
+ In addition, our model is hosted on LMSYS [Chatbot Arena](https://chat.lmsys.org) for free test.
398
+
399
+ The conversation template is the same as Openchat 3.5:
400
+ ```
401
+ import transformers
402
+ tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
403
+
404
+ # Single-turn
405
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
406
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
407
+
408
+ # Multi-turn
409
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
410
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
411
+
412
+ # Coding Mode
413
+ tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
414
+ assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
415
+ ```
416
+
417
+
418
+ ## License
419
+ The dataset, model and online demo is a research preview intended for non-commercial use only, subject to the data distillation [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
420
+
421
+
422
+ ## Acknowledgment
423
+ We would like to thank Wei-Lin Chiang from Berkeley for detailed feedback of the blog and the projects. We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of [lmsys-chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset, evaluation and online demo. We would like to thank the open source community for their efforts in providing the datasets and base models we used to develope the project, including but not limited to Anthropic, Llama, Mistral, Hugging Face H4, LMSYS, OpenChat, OpenBMB, Flan and ShareGPT.
424
+
425
+ ## Citation
426
+ ```
427
+ @misc{starling2023,
428
+ title = {Starling-7B: Improving LLM Helpfulness & Harmlessness with RLAIF},
429
+ url = {},
430
+ author = {Zhu, Banghua and Frick, Evan and Wu, Tianhao and Zhu, Hanlin and Jiao, Jiantao},
431
+ month = {November},
432
+ year = {2023}
433
+ }
434
+ ```
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|end_of_turn|>": 32000,
3
+ "<|pad_0|>": 32001
4
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/process/berkeley-nest_starling-lm-7b-alpha/source",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 32000,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 8192,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "quantization_config": {
20
+ "bits": 4,
21
+ "group_size": 128,
22
+ "quant_method": "awq",
23
+ "version": "gemm",
24
+ "zero_point": true
25
+ },
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_theta": 10000.0,
28
+ "sliding_window": 4096,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "float16",
31
+ "transformers_version": "4.35.2",
32
+ "use_cache": true,
33
+ "vocab_size": 32002
34
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 32000,
5
+ "transformers_version": "4.35.0"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc38fa4fcb40313de4e73c17252b0a175b82170f5e8d2c877b0dbb22eb08621
3
+ size 4150913000
openchat.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"local_rank": 0, "model_path": "imone/Mistral_7B_with_EOT_token", "data_prefix": "dataset_openchat3.5/tokenized/openchat_mistral_1017", "save_path": "/ML-A100/home/csj/trained_models/openchat_mistral/1017", "save_every": 1, "batch_size_per_gpu": 10, "epochs": 5, "lr": 1.2507232220003032e-05, "lr_min_ratio": 0.1, "lr_warmup_ratio": 0.05, "weight_decay": 0.1, "beta1": 0.9, "beta2": 0.95, "eps": 1e-05, "deepspeed": true, "deepspeed_config": "ochat/training_deepspeed/deepspeed_config.json", "deepscale": false, "deepscale_config": null, "deepspeed_mpi": false, "model_type": "openchat_v3.2_mistral", "batch_max_len": 81920, "device": "<non-serializable>", "epoch": 2}
quant_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "zero_point": true,
3
+ "q_group_size": 128,
4
+ "w_bit": 4,
5
+ "version": "GEMM"
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|end_of_turn|>",
4
+ "<|pad_0|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<s>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|end_of_turn|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": "<|end_of_turn|>",
21
+ "sep_token": "<sep>",
22
+ "unk_token": {
23
+ "content": "<unk>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "32000": {
28
+ "content": "<|end_of_turn|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "32001": {
36
+ "content": "<|pad_0|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [
45
+ "<|end_of_turn|>",
46
+ "<|pad_0|>"
47
+ ],
48
+ "bos_token": "<s>",
49
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + message['role'].title() + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}",
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "<|end_of_turn|>",
52
+ "legacy": true,
53
+ "model_max_length": 1000000000000000019884624838656,
54
+ "pad_token": "<|end_of_turn|>",
55
+ "sep_token": "<sep>",
56
+ "sp_model_kwargs": {},
57
+ "spaces_between_special_tokens": false,
58
+ "tokenizer_class": "LlamaTokenizer",
59
+ "unk_token": "<unk>",
60
+ "use_default_system_prompt": true
61
+ }