--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy base_model: microsoft/swin-tiny-patch4-window7-224 model-index: - name: swin-tiny-patch4-window7-224-finetuned-skin-cancer results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder args: default metrics: - type: accuracy value: 0.7275449101796407 name: Accuracy --- # swin-tiny-patch4-window7-224-finetuned-skin-cancer This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7695 - Accuracy: 0.7275 ## Model description This model was created by importing the dataset of the photos of skin cancer into Google Colab from kaggle here: https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000 . I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb obtaining the following notebook: https://colab.research.google.com/drive/1bMkXnAvAqjX3J2YJ8wXTNw2Z2pt5KCjy?usp=sharing The possible classified diseases are: 'Actinic-keratoses', 'Basal-cell-carcinoma', 'Benign-keratosis-like-lesions', 'Dermatofibroma', 'Melanocytic-nevi', 'Melanoma', 'Vascular-lesions' . ## Skin example: ![skin](skin.png) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 0.99 | 70 | 0.7695 | 0.7275 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1