--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-parkinson-classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- # swin-tiny-patch4-window7-224-finetuned-parkinson-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4966 - Accuracy: 0.9091 ## Model description This model was created by importing the dataset of spiral drawings made by both parkinsons patients and healthy people into Google Colab from kaggle here: https://www.kaggle.com/datasets/kmader/parkinsons-drawings/data. I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb obtaining the following notebook: https://colab.research.google.com/drive/1oRjwgHjmaQYRU1qf-TTV7cg1qMZXgMaO?usp=sharing The possible classified data are: ### Spiral drawing example: ![Screenshot](N1.png) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6801 | 0.4545 | | No log | 2.0 | 3 | 0.8005 | 0.3636 | | No log | 3.0 | 5 | 0.6325 | 0.6364 | | No log | 4.0 | 6 | 0.5494 | 0.8182 | | No log | 5.0 | 7 | 0.5214 | 0.8182 | | No log | 6.0 | 9 | 0.5735 | 0.7273 | | 0.3063 | 7.0 | 11 | 0.4966 | 0.9091 | | 0.3063 | 8.0 | 12 | 0.4557 | 0.9091 | | 0.3063 | 9.0 | 13 | 0.4444 | 0.9091 | | 0.3063 | 10.0 | 15 | 0.6226 | 0.6364 | | 0.3063 | 11.0 | 17 | 0.8224 | 0.4545 | | 0.3063 | 12.0 | 18 | 0.8127 | 0.4545 | | 0.3063 | 13.0 | 19 | 0.7868 | 0.4545 | | 0.2277 | 14.0 | 21 | 0.8195 | 0.4545 | | 0.2277 | 15.0 | 23 | 0.7499 | 0.4545 | | 0.2277 | 16.0 | 24 | 0.7022 | 0.5455 | | 0.2277 | 17.0 | 25 | 0.6755 | 0.5455 | | 0.2277 | 18.0 | 27 | 0.6277 | 0.6364 | | 0.2277 | 19.0 | 29 | 0.5820 | 0.6364 | | 0.1867 | 20.0 | 30 | 0.5784 | 0.6364 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0