--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-lungs-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8745874587458746 --- # swin-tiny-patch4-window7-224-finetuned-lungs-disease This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2817 - Accuracy: 0.8746 ## Model description This model was created by importing the dataset of the chest x-rays images into Google Colab from kaggle here: https://www.kaggle.com/datasets/omkarmanohardalvi/lungs-disease-dataset-4-types . I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb obtaining the following notebook: https://colab.research.google.com/drive/1rNKeA25BR05iMUvKFvRD8SkySBOlO4AC?usp=sharing 'Viral Pneumonia', 'Corona Virus Disease', 'Normal', 'Tuberculosis', 'Bacterial Pneumonia' The possible classified data are: ### X-rays image example: ![Screenshot](lung.png) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7851 | 0.98 | 21 | 0.4674 | 0.8152 | | 0.4335 | 2.0 | 43 | 0.3662 | 0.8515 | | 0.3231 | 2.98 | 64 | 0.3361 | 0.8581 | | 0.3014 | 4.0 | 86 | 0.2817 | 0.8746 | | 0.252 | 4.88 | 105 | 0.3071 | 0.8713 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2