Update README.md
Browse files
README.md
CHANGED
@@ -36,17 +36,19 @@ It achieves the following results on the evaluation set:
|
|
36 |
|
37 |
## Model description
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
## Training procedure
|
50 |
|
51 |
### Training hyperparameters
|
52 |
|
|
|
36 |
|
37 |
## Model description
|
38 |
|
39 |
+
This model was created by importing the dataset of the photos of flowers into
|
40 |
+
Google Colab from kaggle here: https://www.kaggle.com/datasets/l3llff/flowers.
|
41 |
+
I then used the image classification tutorial here:
|
42 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb
|
43 |
|
44 |
+
obtaining the following notebook:
|
45 |
|
46 |
+
https://colab.research.google.com/drive/1bapCEz4vkDd16Ax9jb5oHGa85PeuyZVW?usp=sharing
|
47 |
|
48 |
+
The possible classified flowers are:
|
49 |
+
'common_daisy', 'rose', 'california_poppy', 'iris', 'astilbe', 'carnation',
|
50 |
+
'tulip', 'sunflower', 'coreopsis', 'magnolia', 'water_lily', 'bellflower',
|
51 |
+
'daffodil', 'calendula', 'dandelion', 'black_eyed_susan'
|
|
|
52 |
|
53 |
### Training hyperparameters
|
54 |
|