File size: 10,749 Bytes
19f50da 0bdfe8a 19f50da 0bdfe8a 19f50da 0bdfe8a 19f50da 996485c 19f50da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
license: apache-2.0
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: skops-dis9phuf.pkl
widget:
- structuredData:
x0:
- 3
- 5
- 1
x1:
- 5
- 5
- 3
x10:
- 0
- 0
- 0
x11:
- 0
- 0
- 0
x12:
- 0
- 0
- 0
x13:
- 0
- 0
- 0
x14:
- 0
- 0
- 0
x15:
- 0
- 0
- 0
x16:
- 0
- 0
- 0
x2:
- 3
- 4
- 0
x3:
- 5
- 4
- 0
x4:
- 4
- 4
- 0
x5:
- 4
- 0
- 0
x6:
- 3
- 0
- 0
x7:
- 2
- 0
- 0
x8:
- 3
- 0
- 0
x9:
- 0
- 0
- 0
---
# Model description
This model was created following the instructions in the following Kaggle notebook: https://www.kaggle.com/code/thedankdel/disease-symptom-prediction-ml-99
This model allows you to predict diseases through their symptoms.
**The possible classified diseases are:**
'Acne', 'Hyperthyroidism', 'AIDS', 'Chronic cholestasis',
'Hypertension', 'Hypoglycemia', 'Arthritis', 'Hepatitis B',
'Migraine', 'Urinary tract infection', 'Diabetes', 'Hepatitis D',
'Psoriasis', 'Alcoholic hepatitis', 'Dimorphic hemmorhoids(piles)',
'Hepatitis E', 'Cervical spondylosis', 'Bronchial Asthma',
'hepatitis A', 'Allergy', 'Hepatitis C', 'Pneumonia',
'Hypothyroidism', 'Gastroenteritis', 'Varicose veins', 'Jaundice',
'Drug Reaction', '(vertigo) Paroymsal Positional Vertigo',
'Heart attack', 'Tuberculosis', 'Typhoid', 'Common Cold',
'Peptic ulcer diseae', 'Paralysis (brain hemorrhage)',
'Fungal infection', 'Impetigo', 'GERD', 'Dengue', 'Malaria',
'Chicken pox', 'Osteoarthristis'
**The possible symptoms are:**
'itching', 'skin rash', 'nodal skin eruptions',
'continuous sneezing', 'shivering', 'chills', 'joint pain',
'stomach pain', 'acidity', 'ulcers on tongue', 'muscle wasting',
'vomiting', 'burning micturition', 'spotting urination', 'fatigue',
'weight gain', 'anxiety', 'cold hands and feets', 'mood swings',
'weight loss', 'restlessness', 'lethargy', 'patches in throat',
'irregular sugar level', 'cough', 'high fever', 'sunken eyes',
'breathlessness', 'sweating', 'dehydration', 'indigestion',
'headache', 'yellowish skin', 'dark urine', 'nausea',
'loss of appetite', 'pain behind the eyes', 'back pain',
'constipation', 'abdominal pain', 'diarrhoea', 'mild fever',
'yellow urine', 'yellowing of eyes', 'acute liver failure',
'fluid overload', 'swelling of stomach', 'swelled lymph nodes',
'malaise', 'blurred and distorted vision', 'phlegm',
'throat irritation', 'redness of eyes', 'sinus pressure',
'runny nose', 'congestion', 'chest pain', 'weakness in limbs',
'fast heart rate', 'pain during bowel movements',
'pain in anal region', 'bloody stool', 'irritation in anus',
'neck pain', 'dizziness', 'cramps', 'bruising', 'obesity',
'swollen legs', 'swollen blood vessels', 'puffy face and eyes',
'enlarged thyroid', 'brittle nails', 'swollen extremeties',
'excessive hunger', 'extra marital contacts',
'drying and tingling lips', 'slurred speech', 'knee pain',
'hip joint pain', 'muscle weakness', 'stiff neck',
'swelling joints', 'movement stiffness', 'spinning movements',
'loss of balance', 'unsteadiness', 'weakness of one body side',
'loss of smell', 'bladder discomfort', 'foul smell ofurine',
'continuous feel of urine', 'passage of gases', 'internal itching',
'toxic look (typhos)', 'depression', 'irritability', 'muscle pain',
'altered sensorium', 'red spots over body', 'belly pain',
'abnormal menstruation', 'dischromic patches',
'watering from eyes', 'increased appetite', 'polyuria',
'family history', 'mucoid sputum', 'rusty sputum',
'lack of concentration', 'visual disturbances',
'receiving blood transfusion', 'receiving unsterile injections',
'coma', 'stomach bleeding', 'distention of abdomen',
'history of alcohol consumption', 'blood in sputum',
'prominent veins on calf', 'palpitations', 'painful walking',
'pus filled pimples', 'blackheads', 'scurring', 'skin peeling',
'silver like dusting', 'small dents in nails',
'inflammatory nails', 'blister', 'red sore around nose',
'yellow crust ooze', 'prognosis'
## Intended uses & limitations
This model follows the limitations of the Apache 2.0 license.
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|---------|
| bootstrap | True |
| ccp_alpha | 0.0 |
| class_weight | |
| criterion | gini |
| max_depth | 13 |
| max_features | sqrt |
| max_leaf_nodes | |
| max_samples | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 500 |
| n_jobs | |
| oob_score | False |
| random_state | 42 |
| verbose | 0 |
| warm_start | False |
</details>
### Model Plot
<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier(max_depth=13, n_estimators=500, random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(max_depth=13, n_estimators=500, random_state=42)</pre></div></div></div></div></div>
## Evaluation Results
| Metric | Value |
|----------|----------|
| accuracy | 0.995935 |
| f1 score | 0.995935 |
# How to Get Started with the Model
This model can be tested by running the code contained in this Github notebook: https://github.com/gianlab/machine-learning-notebooks/blob/main/Disease_prediction_random_forest.ipynb
|