File size: 10,749 Bytes
19f50da
 
 
 
 
 
 
 
0bdfe8a
19f50da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bdfe8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19f50da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bdfe8a
19f50da
996485c
19f50da
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
license: apache-2.0
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: skops-dis9phuf.pkl
widget:
- structuredData:
    x0:
    - 3
    - 5
    - 1
    x1:
    - 5
    - 5
    - 3
    x10:
    - 0
    - 0
    - 0
    x11:
    - 0
    - 0
    - 0
    x12:
    - 0
    - 0
    - 0
    x13:
    - 0
    - 0
    - 0
    x14:
    - 0
    - 0
    - 0
    x15:
    - 0
    - 0
    - 0
    x16:
    - 0
    - 0
    - 0
    x2:
    - 3
    - 4
    - 0
    x3:
    - 5
    - 4
    - 0
    x4:
    - 4
    - 4
    - 0
    x5:
    - 4
    - 0
    - 0
    x6:
    - 3
    - 0
    - 0
    x7:
    - 2
    - 0
    - 0
    x8:
    - 3
    - 0
    - 0
    x9:
    - 0
    - 0
    - 0
---

# Model description

This model was created following the instructions in the following Kaggle notebook: https://www.kaggle.com/code/thedankdel/disease-symptom-prediction-ml-99 

This model allows you to predict diseases through their symptoms.

**The possible classified diseases are:**

'Acne', 'Hyperthyroidism', 'AIDS', 'Chronic cholestasis',
       'Hypertension', 'Hypoglycemia', 'Arthritis', 'Hepatitis B',
       'Migraine', 'Urinary tract infection', 'Diabetes', 'Hepatitis D',
       'Psoriasis', 'Alcoholic hepatitis', 'Dimorphic hemmorhoids(piles)',
       'Hepatitis E', 'Cervical spondylosis', 'Bronchial Asthma',
       'hepatitis A', 'Allergy', 'Hepatitis C', 'Pneumonia',
       'Hypothyroidism', 'Gastroenteritis', 'Varicose veins', 'Jaundice',
       'Drug Reaction', '(vertigo) Paroymsal  Positional Vertigo',
       'Heart attack', 'Tuberculosis', 'Typhoid', 'Common Cold',
       'Peptic ulcer diseae', 'Paralysis (brain hemorrhage)',
       'Fungal infection', 'Impetigo', 'GERD', 'Dengue', 'Malaria',
       'Chicken pox', 'Osteoarthristis'


**The possible symptoms are:**

'itching', 'skin rash', 'nodal skin eruptions',
       'continuous sneezing', 'shivering', 'chills', 'joint pain',
       'stomach pain', 'acidity', 'ulcers on tongue', 'muscle wasting',
       'vomiting', 'burning micturition', 'spotting urination', 'fatigue',
       'weight gain', 'anxiety', 'cold hands and feets', 'mood swings',
       'weight loss', 'restlessness', 'lethargy', 'patches in throat',
       'irregular sugar level', 'cough', 'high fever', 'sunken eyes',
       'breathlessness', 'sweating', 'dehydration', 'indigestion',
       'headache', 'yellowish skin', 'dark urine', 'nausea',
       'loss of appetite', 'pain behind the eyes', 'back pain',
       'constipation', 'abdominal pain', 'diarrhoea', 'mild fever',
       'yellow urine', 'yellowing of eyes', 'acute liver failure',
       'fluid overload', 'swelling of stomach', 'swelled lymph nodes',
       'malaise', 'blurred and distorted vision', 'phlegm',
       'throat irritation', 'redness of eyes', 'sinus pressure',
       'runny nose', 'congestion', 'chest pain', 'weakness in limbs',
       'fast heart rate', 'pain during bowel movements',
       'pain in anal region', 'bloody stool', 'irritation in anus',
       'neck pain', 'dizziness', 'cramps', 'bruising', 'obesity',
       'swollen legs', 'swollen blood vessels', 'puffy face and eyes',
       'enlarged thyroid', 'brittle nails', 'swollen extremeties',
       'excessive hunger', 'extra marital contacts',
       'drying and tingling lips', 'slurred speech', 'knee pain',
       'hip joint pain', 'muscle weakness', 'stiff neck',
       'swelling joints', 'movement stiffness', 'spinning movements',
       'loss of balance', 'unsteadiness', 'weakness of one body side',
       'loss of smell', 'bladder discomfort', 'foul smell ofurine',
       'continuous feel of urine', 'passage of gases', 'internal itching',
       'toxic look (typhos)', 'depression', 'irritability', 'muscle pain',
       'altered sensorium', 'red spots over body', 'belly pain',
       'abnormal menstruation', 'dischromic patches',
       'watering from eyes', 'increased appetite', 'polyuria',
       'family history', 'mucoid sputum', 'rusty sputum',
       'lack of concentration', 'visual disturbances',
       'receiving blood transfusion', 'receiving unsterile injections',
       'coma', 'stomach bleeding', 'distention of abdomen',
       'history of alcohol consumption', 'blood in sputum',
       'prominent veins on calf', 'palpitations', 'painful walking',
       'pus filled pimples', 'blackheads', 'scurring', 'skin peeling',
       'silver like dusting', 'small dents in nails',
       'inflammatory nails', 'blister', 'red sore around nose',
       'yellow crust ooze', 'prognosis'
## Intended uses & limitations

This model follows the limitations of the Apache 2.0 license.


### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value   |
|--------------------------|---------|
| bootstrap                | True    |
| ccp_alpha                | 0.0     |
| class_weight             |         |
| criterion                | gini    |
| max_depth                | 13      |
| max_features             | sqrt    |
| max_leaf_nodes           |         |
| max_samples              |         |
| min_impurity_decrease    | 0.0     |
| min_samples_leaf         | 1       |
| min_samples_split        | 2       |
| min_weight_fraction_leaf | 0.0     |
| n_estimators             | 500     |
| n_jobs                   |         |
| oob_score                | False   |
| random_state             | 42      |
| verbose                  | 0       |
| warm_start               | False   |

</details>

### Model Plot

<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier(max_depth=13, n_estimators=500, random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(max_depth=13, n_estimators=500, random_state=42)</pre></div></div></div></div></div>

## Evaluation Results

| Metric   |    Value |
|----------|----------|
| accuracy | 0.995935 |
| f1 score | 0.995935 |



# How to Get Started with the Model

This model can be tested by running the code contained in this Github notebook: https://github.com/gianlab/machine-learning-notebooks/blob/main/Disease_prediction_random_forest.ipynb