---
license: apache-2.0
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: skops-xwel2v4p.pkl
widget:
- structuredData:
age:
- 40
- 21
- 55
alamine_aminotransferase:
- 232
- 36
- 112
albumin_and_globulin_ratio:
- 0.8
- 1.34
- 0.8
alkaline_phosphotase:
- 293
- 150
- 482
gender:
- 0
- 1
- 1
total_bilirubin:
- 0.9
- 3.9
- 0.8
---
# Model description
This model was created following the instructions in the following Kaggle notebook:
https://www.kaggle.com/code/michalbrezk/xgboost-classifier-and-hyperparameter-tuning-85
The possible classified predictions are: 'Non liver patient', 'Liver patient'
The predictors are: age, gender, total_bilirubin, alkaline_phosphotase, alamine_aminotransferase, albumin_and_globulin_ratio
## Intended uses & limitations
This model follows the limitations of the Apache 2.0 license.
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------|---------|
| bootstrap | False |
| ccp_alpha | 0.0 |
| class_weight | |
| criterion | gini |
| max_depth | |
| max_features | sqrt |
| max_leaf_nodes | |
| max_samples | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 100 |
| n_jobs | |
| oob_score | False |
| random_state | 123 |
| verbose | 0 |
| warm_start | False |
ExtraTreesClassifier(random_state=123)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
ExtraTreesClassifier(random_state=123)