File size: 1,963 Bytes
25c3cfe f481c9c 25c3cfe f481c9c 25c3cfe b521574 25c3cfe 63f2753 25c3cfe f481c9c 25c3cfe 63f2753 25c3cfe 63f2753 b521574 25c3cfe f481c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: billsum-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# billsum-model
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co./google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2894
- Rouge1: 0.4161
- Rouge2: 0.1838
- Rougel: 0.2786
- Rougelsum: 0.2791
- Gen Len: 149.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log | 1.0 | 248 | 2.4737 | 0.3984 | 0.1645 | 0.261 | 0.2607 | 144.9718 |
| No log | 2.0 | 496 | 2.3435 | 0.4126 | 0.1783 | 0.2762 | 0.2764 | 148.754 |
| 3.4184 | 3.0 | 744 | 2.3004 | 0.4162 | 0.1814 | 0.2765 | 0.2767 | 149.0 |
| 3.4184 | 4.0 | 992 | 2.2894 | 0.4161 | 0.1838 | 0.2786 | 0.2791 | 149.0 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|