|
|
|
import annotator.uniformer.mmcv as mmcv |
|
from .hook import HOOKS, Hook |
|
from .lr_updater import annealing_cos, annealing_linear, format_param |
|
|
|
|
|
class MomentumUpdaterHook(Hook): |
|
|
|
def __init__(self, |
|
by_epoch=True, |
|
warmup=None, |
|
warmup_iters=0, |
|
warmup_ratio=0.9): |
|
|
|
if warmup is not None: |
|
if warmup not in ['constant', 'linear', 'exp']: |
|
raise ValueError( |
|
f'"{warmup}" is not a supported type for warming up, valid' |
|
' types are "constant" and "linear"') |
|
if warmup is not None: |
|
assert warmup_iters > 0, \ |
|
'"warmup_iters" must be a positive integer' |
|
assert 0 < warmup_ratio <= 1.0, \ |
|
'"warmup_momentum" must be in range (0,1]' |
|
|
|
self.by_epoch = by_epoch |
|
self.warmup = warmup |
|
self.warmup_iters = warmup_iters |
|
self.warmup_ratio = warmup_ratio |
|
|
|
self.base_momentum = [] |
|
self.regular_momentum = [ |
|
] |
|
|
|
def _set_momentum(self, runner, momentum_groups): |
|
if isinstance(runner.optimizer, dict): |
|
for k, optim in runner.optimizer.items(): |
|
for param_group, mom in zip(optim.param_groups, |
|
momentum_groups[k]): |
|
if 'momentum' in param_group.keys(): |
|
param_group['momentum'] = mom |
|
elif 'betas' in param_group.keys(): |
|
param_group['betas'] = (mom, param_group['betas'][1]) |
|
else: |
|
for param_group, mom in zip(runner.optimizer.param_groups, |
|
momentum_groups): |
|
if 'momentum' in param_group.keys(): |
|
param_group['momentum'] = mom |
|
elif 'betas' in param_group.keys(): |
|
param_group['betas'] = (mom, param_group['betas'][1]) |
|
|
|
def get_momentum(self, runner, base_momentum): |
|
raise NotImplementedError |
|
|
|
def get_regular_momentum(self, runner): |
|
if isinstance(runner.optimizer, dict): |
|
momentum_groups = {} |
|
for k in runner.optimizer.keys(): |
|
_momentum_group = [ |
|
self.get_momentum(runner, _base_momentum) |
|
for _base_momentum in self.base_momentum[k] |
|
] |
|
momentum_groups.update({k: _momentum_group}) |
|
return momentum_groups |
|
else: |
|
return [ |
|
self.get_momentum(runner, _base_momentum) |
|
for _base_momentum in self.base_momentum |
|
] |
|
|
|
def get_warmup_momentum(self, cur_iters): |
|
|
|
def _get_warmup_momentum(cur_iters, regular_momentum): |
|
if self.warmup == 'constant': |
|
warmup_momentum = [ |
|
_momentum / self.warmup_ratio |
|
for _momentum in self.regular_momentum |
|
] |
|
elif self.warmup == 'linear': |
|
k = (1 - cur_iters / self.warmup_iters) * (1 - |
|
self.warmup_ratio) |
|
warmup_momentum = [ |
|
_momentum / (1 - k) for _momentum in self.regular_mom |
|
] |
|
elif self.warmup == 'exp': |
|
k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters) |
|
warmup_momentum = [ |
|
_momentum / k for _momentum in self.regular_mom |
|
] |
|
return warmup_momentum |
|
|
|
if isinstance(self.regular_momentum, dict): |
|
momentum_groups = {} |
|
for key, regular_momentum in self.regular_momentum.items(): |
|
momentum_groups[key] = _get_warmup_momentum( |
|
cur_iters, regular_momentum) |
|
return momentum_groups |
|
else: |
|
return _get_warmup_momentum(cur_iters, self.regular_momentum) |
|
|
|
def before_run(self, runner): |
|
|
|
|
|
|
|
if isinstance(runner.optimizer, dict): |
|
self.base_momentum = {} |
|
for k, optim in runner.optimizer.items(): |
|
for group in optim.param_groups: |
|
if 'momentum' in group.keys(): |
|
group.setdefault('initial_momentum', group['momentum']) |
|
else: |
|
group.setdefault('initial_momentum', group['betas'][0]) |
|
_base_momentum = [ |
|
group['initial_momentum'] for group in optim.param_groups |
|
] |
|
self.base_momentum.update({k: _base_momentum}) |
|
else: |
|
for group in runner.optimizer.param_groups: |
|
if 'momentum' in group.keys(): |
|
group.setdefault('initial_momentum', group['momentum']) |
|
else: |
|
group.setdefault('initial_momentum', group['betas'][0]) |
|
self.base_momentum = [ |
|
group['initial_momentum'] |
|
for group in runner.optimizer.param_groups |
|
] |
|
|
|
def before_train_epoch(self, runner): |
|
if not self.by_epoch: |
|
return |
|
self.regular_mom = self.get_regular_momentum(runner) |
|
self._set_momentum(runner, self.regular_mom) |
|
|
|
def before_train_iter(self, runner): |
|
cur_iter = runner.iter |
|
if not self.by_epoch: |
|
self.regular_mom = self.get_regular_momentum(runner) |
|
if self.warmup is None or cur_iter >= self.warmup_iters: |
|
self._set_momentum(runner, self.regular_mom) |
|
else: |
|
warmup_momentum = self.get_warmup_momentum(cur_iter) |
|
self._set_momentum(runner, warmup_momentum) |
|
elif self.by_epoch: |
|
if self.warmup is None or cur_iter > self.warmup_iters: |
|
return |
|
elif cur_iter == self.warmup_iters: |
|
self._set_momentum(runner, self.regular_mom) |
|
else: |
|
warmup_momentum = self.get_warmup_momentum(cur_iter) |
|
self._set_momentum(runner, warmup_momentum) |
|
|
|
|
|
@HOOKS.register_module() |
|
class StepMomentumUpdaterHook(MomentumUpdaterHook): |
|
"""Step momentum scheduler with min value clipping. |
|
|
|
Args: |
|
step (int | list[int]): Step to decay the momentum. If an int value is |
|
given, regard it as the decay interval. If a list is given, decay |
|
momentum at these steps. |
|
gamma (float, optional): Decay momentum ratio. Default: 0.5. |
|
min_momentum (float, optional): Minimum momentum value to keep. If |
|
momentum after decay is lower than this value, it will be clipped |
|
accordingly. If None is given, we don't perform lr clipping. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, step, gamma=0.5, min_momentum=None, **kwargs): |
|
if isinstance(step, list): |
|
assert mmcv.is_list_of(step, int) |
|
assert all([s > 0 for s in step]) |
|
elif isinstance(step, int): |
|
assert step > 0 |
|
else: |
|
raise TypeError('"step" must be a list or integer') |
|
self.step = step |
|
self.gamma = gamma |
|
self.min_momentum = min_momentum |
|
super(StepMomentumUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_momentum(self, runner, base_momentum): |
|
progress = runner.epoch if self.by_epoch else runner.iter |
|
|
|
|
|
if isinstance(self.step, int): |
|
exp = progress // self.step |
|
else: |
|
exp = len(self.step) |
|
for i, s in enumerate(self.step): |
|
if progress < s: |
|
exp = i |
|
break |
|
|
|
momentum = base_momentum * (self.gamma**exp) |
|
if self.min_momentum is not None: |
|
|
|
momentum = max(momentum, self.min_momentum) |
|
return momentum |
|
|
|
|
|
@HOOKS.register_module() |
|
class CosineAnnealingMomentumUpdaterHook(MomentumUpdaterHook): |
|
|
|
def __init__(self, min_momentum=None, min_momentum_ratio=None, **kwargs): |
|
assert (min_momentum is None) ^ (min_momentum_ratio is None) |
|
self.min_momentum = min_momentum |
|
self.min_momentum_ratio = min_momentum_ratio |
|
super(CosineAnnealingMomentumUpdaterHook, self).__init__(**kwargs) |
|
|
|
def get_momentum(self, runner, base_momentum): |
|
if self.by_epoch: |
|
progress = runner.epoch |
|
max_progress = runner.max_epochs |
|
else: |
|
progress = runner.iter |
|
max_progress = runner.max_iters |
|
if self.min_momentum_ratio is not None: |
|
target_momentum = base_momentum * self.min_momentum_ratio |
|
else: |
|
target_momentum = self.min_momentum |
|
return annealing_cos(base_momentum, target_momentum, |
|
progress / max_progress) |
|
|
|
|
|
@HOOKS.register_module() |
|
class CyclicMomentumUpdaterHook(MomentumUpdaterHook): |
|
"""Cyclic momentum Scheduler. |
|
|
|
Implement the cyclical momentum scheduler policy described in |
|
https://arxiv.org/pdf/1708.07120.pdf |
|
|
|
This momentum scheduler usually used together with the CyclicLRUpdater |
|
to improve the performance in the 3D detection area. |
|
|
|
Attributes: |
|
target_ratio (tuple[float]): Relative ratio of the lowest momentum and |
|
the highest momentum to the initial momentum. |
|
cyclic_times (int): Number of cycles during training |
|
step_ratio_up (float): The ratio of the increasing process of momentum |
|
in the total cycle. |
|
by_epoch (bool): Whether to update momentum by epoch. |
|
""" |
|
|
|
def __init__(self, |
|
by_epoch=False, |
|
target_ratio=(0.85 / 0.95, 1), |
|
cyclic_times=1, |
|
step_ratio_up=0.4, |
|
**kwargs): |
|
if isinstance(target_ratio, float): |
|
target_ratio = (target_ratio, target_ratio / 1e5) |
|
elif isinstance(target_ratio, tuple): |
|
target_ratio = (target_ratio[0], target_ratio[0] / 1e5) \ |
|
if len(target_ratio) == 1 else target_ratio |
|
else: |
|
raise ValueError('target_ratio should be either float ' |
|
f'or tuple, got {type(target_ratio)}') |
|
|
|
assert len(target_ratio) == 2, \ |
|
'"target_ratio" must be list or tuple of two floats' |
|
assert 0 <= step_ratio_up < 1.0, \ |
|
'"step_ratio_up" must be in range [0,1)' |
|
|
|
self.target_ratio = target_ratio |
|
self.cyclic_times = cyclic_times |
|
self.step_ratio_up = step_ratio_up |
|
self.momentum_phases = [] |
|
|
|
assert not by_epoch, \ |
|
'currently only support "by_epoch" = False' |
|
super(CyclicMomentumUpdaterHook, self).__init__(by_epoch, **kwargs) |
|
|
|
def before_run(self, runner): |
|
super(CyclicMomentumUpdaterHook, self).before_run(runner) |
|
|
|
|
|
max_iter_per_phase = runner.max_iters // self.cyclic_times |
|
iter_up_phase = int(self.step_ratio_up * max_iter_per_phase) |
|
self.momentum_phases.append( |
|
[0, iter_up_phase, max_iter_per_phase, 1, self.target_ratio[0]]) |
|
self.momentum_phases.append([ |
|
iter_up_phase, max_iter_per_phase, max_iter_per_phase, |
|
self.target_ratio[0], self.target_ratio[1] |
|
]) |
|
|
|
def get_momentum(self, runner, base_momentum): |
|
curr_iter = runner.iter |
|
for (start_iter, end_iter, max_iter_per_phase, start_ratio, |
|
end_ratio) in self.momentum_phases: |
|
curr_iter %= max_iter_per_phase |
|
if start_iter <= curr_iter < end_iter: |
|
progress = curr_iter - start_iter |
|
return annealing_cos(base_momentum * start_ratio, |
|
base_momentum * end_ratio, |
|
progress / (end_iter - start_iter)) |
|
|
|
|
|
@HOOKS.register_module() |
|
class OneCycleMomentumUpdaterHook(MomentumUpdaterHook): |
|
"""OneCycle momentum Scheduler. |
|
|
|
This momentum scheduler usually used together with the OneCycleLrUpdater |
|
to improve the performance. |
|
|
|
Args: |
|
base_momentum (float or list): Lower momentum boundaries in the cycle |
|
for each parameter group. Note that momentum is cycled inversely |
|
to learning rate; at the peak of a cycle, momentum is |
|
'base_momentum' and learning rate is 'max_lr'. |
|
Default: 0.85 |
|
max_momentum (float or list): Upper momentum boundaries in the cycle |
|
for each parameter group. Functionally, |
|
it defines the cycle amplitude (max_momentum - base_momentum). |
|
Note that momentum is cycled inversely |
|
to learning rate; at the start of a cycle, momentum is |
|
'max_momentum' and learning rate is 'base_lr' |
|
Default: 0.95 |
|
pct_start (float): The percentage of the cycle (in number of steps) |
|
spent increasing the learning rate. |
|
Default: 0.3 |
|
anneal_strategy (str): {'cos', 'linear'} |
|
Specifies the annealing strategy: 'cos' for cosine annealing, |
|
'linear' for linear annealing. |
|
Default: 'cos' |
|
three_phase (bool): If three_phase is True, use a third phase of the |
|
schedule to annihilate the learning rate according to |
|
final_div_factor instead of modifying the second phase (the first |
|
two phases will be symmetrical about the step indicated by |
|
pct_start). |
|
Default: False |
|
""" |
|
|
|
def __init__(self, |
|
base_momentum=0.85, |
|
max_momentum=0.95, |
|
pct_start=0.3, |
|
anneal_strategy='cos', |
|
three_phase=False, |
|
**kwargs): |
|
|
|
if 'by_epoch' not in kwargs: |
|
kwargs['by_epoch'] = False |
|
else: |
|
assert not kwargs['by_epoch'], \ |
|
'currently only support "by_epoch" = False' |
|
if not isinstance(base_momentum, (float, list, dict)): |
|
raise ValueError('base_momentum must be the type among of float,' |
|
'list or dict.') |
|
self._base_momentum = base_momentum |
|
if not isinstance(max_momentum, (float, list, dict)): |
|
raise ValueError('max_momentum must be the type among of float,' |
|
'list or dict.') |
|
self._max_momentum = max_momentum |
|
|
|
if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): |
|
raise ValueError('Expected float between 0 and 1 pct_start, but ' |
|
f'got {pct_start}') |
|
self.pct_start = pct_start |
|
|
|
if anneal_strategy not in ['cos', 'linear']: |
|
raise ValueError('anneal_strategy must by one of "cos" or ' |
|
f'"linear", instead got {anneal_strategy}') |
|
elif anneal_strategy == 'cos': |
|
self.anneal_func = annealing_cos |
|
elif anneal_strategy == 'linear': |
|
self.anneal_func = annealing_linear |
|
self.three_phase = three_phase |
|
self.momentum_phases = [] |
|
super(OneCycleMomentumUpdaterHook, self).__init__(**kwargs) |
|
|
|
def before_run(self, runner): |
|
if isinstance(runner.optimizer, dict): |
|
for k, optim in runner.optimizer.items(): |
|
if ('momentum' not in optim.defaults |
|
and 'betas' not in optim.defaults): |
|
raise ValueError('optimizer must support momentum with' |
|
'option enabled') |
|
self.use_beta1 = 'betas' in optim.defaults |
|
_base_momentum = format_param(k, optim, self._base_momentum) |
|
_max_momentum = format_param(k, optim, self._max_momentum) |
|
for group, b_momentum, m_momentum in zip( |
|
optim.param_groups, _base_momentum, _max_momentum): |
|
if self.use_beta1: |
|
_, beta2 = group['betas'] |
|
group['betas'] = (m_momentum, beta2) |
|
else: |
|
group['momentum'] = m_momentum |
|
group['base_momentum'] = b_momentum |
|
group['max_momentum'] = m_momentum |
|
else: |
|
optim = runner.optimizer |
|
if ('momentum' not in optim.defaults |
|
and 'betas' not in optim.defaults): |
|
raise ValueError('optimizer must support momentum with' |
|
'option enabled') |
|
self.use_beta1 = 'betas' in optim.defaults |
|
k = type(optim).__name__ |
|
_base_momentum = format_param(k, optim, self._base_momentum) |
|
_max_momentum = format_param(k, optim, self._max_momentum) |
|
for group, b_momentum, m_momentum in zip(optim.param_groups, |
|
_base_momentum, |
|
_max_momentum): |
|
if self.use_beta1: |
|
_, beta2 = group['betas'] |
|
group['betas'] = (m_momentum, beta2) |
|
else: |
|
group['momentum'] = m_momentum |
|
group['base_momentum'] = b_momentum |
|
group['max_momentum'] = m_momentum |
|
|
|
if self.three_phase: |
|
self.momentum_phases.append({ |
|
'end_iter': |
|
float(self.pct_start * runner.max_iters) - 1, |
|
'start_momentum': |
|
'max_momentum', |
|
'end_momentum': |
|
'base_momentum' |
|
}) |
|
self.momentum_phases.append({ |
|
'end_iter': |
|
float(2 * self.pct_start * runner.max_iters) - 2, |
|
'start_momentum': |
|
'base_momentum', |
|
'end_momentum': |
|
'max_momentum' |
|
}) |
|
self.momentum_phases.append({ |
|
'end_iter': runner.max_iters - 1, |
|
'start_momentum': 'max_momentum', |
|
'end_momentum': 'max_momentum' |
|
}) |
|
else: |
|
self.momentum_phases.append({ |
|
'end_iter': |
|
float(self.pct_start * runner.max_iters) - 1, |
|
'start_momentum': |
|
'max_momentum', |
|
'end_momentum': |
|
'base_momentum' |
|
}) |
|
self.momentum_phases.append({ |
|
'end_iter': runner.max_iters - 1, |
|
'start_momentum': 'base_momentum', |
|
'end_momentum': 'max_momentum' |
|
}) |
|
|
|
def _set_momentum(self, runner, momentum_groups): |
|
if isinstance(runner.optimizer, dict): |
|
for k, optim in runner.optimizer.items(): |
|
for param_group, mom in zip(optim.param_groups, |
|
momentum_groups[k]): |
|
if 'momentum' in param_group.keys(): |
|
param_group['momentum'] = mom |
|
elif 'betas' in param_group.keys(): |
|
param_group['betas'] = (mom, param_group['betas'][1]) |
|
else: |
|
for param_group, mom in zip(runner.optimizer.param_groups, |
|
momentum_groups): |
|
if 'momentum' in param_group.keys(): |
|
param_group['momentum'] = mom |
|
elif 'betas' in param_group.keys(): |
|
param_group['betas'] = (mom, param_group['betas'][1]) |
|
|
|
def get_momentum(self, runner, param_group): |
|
curr_iter = runner.iter |
|
start_iter = 0 |
|
for i, phase in enumerate(self.momentum_phases): |
|
end_iter = phase['end_iter'] |
|
if curr_iter <= end_iter or i == len(self.momentum_phases) - 1: |
|
pct = (curr_iter - start_iter) / (end_iter - start_iter) |
|
momentum = self.anneal_func( |
|
param_group[phase['start_momentum']], |
|
param_group[phase['end_momentum']], pct) |
|
break |
|
start_iter = end_iter |
|
return momentum |
|
|
|
def get_regular_momentum(self, runner): |
|
if isinstance(runner.optimizer, dict): |
|
momentum_groups = {} |
|
for k, optim in runner.optimizer.items(): |
|
_momentum_group = [ |
|
self.get_momentum(runner, param_group) |
|
for param_group in optim.param_groups |
|
] |
|
momentum_groups.update({k: _momentum_group}) |
|
return momentum_groups |
|
else: |
|
momentum_groups = [] |
|
for param_group in runner.optimizer.param_groups: |
|
momentum_groups.append(self.get_momentum(runner, param_group)) |
|
return momentum_groups |
|
|