|
|
|
import datetime |
|
import os |
|
import os.path as osp |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
import annotator.uniformer.mmcv as mmcv |
|
from annotator.uniformer.mmcv.fileio.file_client import FileClient |
|
from annotator.uniformer.mmcv.utils import is_tuple_of, scandir |
|
from ..hook import HOOKS |
|
from .base import LoggerHook |
|
|
|
|
|
@HOOKS.register_module() |
|
class TextLoggerHook(LoggerHook): |
|
"""Logger hook in text. |
|
|
|
In this logger hook, the information will be printed on terminal and |
|
saved in json file. |
|
|
|
Args: |
|
by_epoch (bool, optional): Whether EpochBasedRunner is used. |
|
Default: True. |
|
interval (int, optional): Logging interval (every k iterations). |
|
Default: 10. |
|
ignore_last (bool, optional): Ignore the log of last iterations in each |
|
epoch if less than :attr:`interval`. Default: True. |
|
reset_flag (bool, optional): Whether to clear the output buffer after |
|
logging. Default: False. |
|
interval_exp_name (int, optional): Logging interval for experiment |
|
name. This feature is to help users conveniently get the experiment |
|
information from screen or log file. Default: 1000. |
|
out_dir (str, optional): Logs are saved in ``runner.work_dir`` default. |
|
If ``out_dir`` is specified, logs will be copied to a new directory |
|
which is the concatenation of ``out_dir`` and the last level |
|
directory of ``runner.work_dir``. Default: None. |
|
`New in version 1.3.16.` |
|
out_suffix (str or tuple[str], optional): Those filenames ending with |
|
``out_suffix`` will be copied to ``out_dir``. |
|
Default: ('.log.json', '.log', '.py'). |
|
`New in version 1.3.16.` |
|
keep_local (bool, optional): Whether to keep local log when |
|
:attr:`out_dir` is specified. If False, the local log will be |
|
removed. Default: True. |
|
`New in version 1.3.16.` |
|
file_client_args (dict, optional): Arguments to instantiate a |
|
FileClient. See :class:`mmcv.fileio.FileClient` for details. |
|
Default: None. |
|
`New in version 1.3.16.` |
|
""" |
|
|
|
def __init__(self, |
|
by_epoch=True, |
|
interval=10, |
|
ignore_last=True, |
|
reset_flag=False, |
|
interval_exp_name=1000, |
|
out_dir=None, |
|
out_suffix=('.log.json', '.log', '.py'), |
|
keep_local=True, |
|
file_client_args=None): |
|
super(TextLoggerHook, self).__init__(interval, ignore_last, reset_flag, |
|
by_epoch) |
|
self.by_epoch = by_epoch |
|
self.time_sec_tot = 0 |
|
self.interval_exp_name = interval_exp_name |
|
|
|
if out_dir is None and file_client_args is not None: |
|
raise ValueError( |
|
'file_client_args should be "None" when `out_dir` is not' |
|
'specified.') |
|
self.out_dir = out_dir |
|
|
|
if not (out_dir is None or isinstance(out_dir, str) |
|
or is_tuple_of(out_dir, str)): |
|
raise TypeError('out_dir should be "None" or string or tuple of ' |
|
'string, but got {out_dir}') |
|
self.out_suffix = out_suffix |
|
|
|
self.keep_local = keep_local |
|
self.file_client_args = file_client_args |
|
if self.out_dir is not None: |
|
self.file_client = FileClient.infer_client(file_client_args, |
|
self.out_dir) |
|
|
|
def before_run(self, runner): |
|
super(TextLoggerHook, self).before_run(runner) |
|
|
|
if self.out_dir is not None: |
|
self.file_client = FileClient.infer_client(self.file_client_args, |
|
self.out_dir) |
|
|
|
|
|
basename = osp.basename(runner.work_dir.rstrip(osp.sep)) |
|
self.out_dir = self.file_client.join_path(self.out_dir, basename) |
|
runner.logger.info( |
|
(f'Text logs will be saved to {self.out_dir} by ' |
|
f'{self.file_client.name} after the training process.')) |
|
|
|
self.start_iter = runner.iter |
|
self.json_log_path = osp.join(runner.work_dir, |
|
f'{runner.timestamp}.log.json') |
|
if runner.meta is not None: |
|
self._dump_log(runner.meta, runner) |
|
|
|
def _get_max_memory(self, runner): |
|
device = getattr(runner.model, 'output_device', None) |
|
mem = torch.cuda.max_memory_allocated(device=device) |
|
mem_mb = torch.tensor([mem / (1024 * 1024)], |
|
dtype=torch.int, |
|
device=device) |
|
if runner.world_size > 1: |
|
dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX) |
|
return mem_mb.item() |
|
|
|
def _log_info(self, log_dict, runner): |
|
|
|
|
|
if runner.meta is not None and 'exp_name' in runner.meta: |
|
if (self.every_n_iters(runner, self.interval_exp_name)) or ( |
|
self.by_epoch and self.end_of_epoch(runner)): |
|
exp_info = f'Exp name: {runner.meta["exp_name"]}' |
|
runner.logger.info(exp_info) |
|
|
|
if log_dict['mode'] == 'train': |
|
if isinstance(log_dict['lr'], dict): |
|
lr_str = [] |
|
for k, val in log_dict['lr'].items(): |
|
lr_str.append(f'lr_{k}: {val:.3e}') |
|
lr_str = ' '.join(lr_str) |
|
else: |
|
lr_str = f'lr: {log_dict["lr"]:.3e}' |
|
|
|
|
|
|
|
if self.by_epoch: |
|
log_str = f'Epoch [{log_dict["epoch"]}]' \ |
|
f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t' |
|
else: |
|
log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t' |
|
log_str += f'{lr_str}, ' |
|
|
|
if 'time' in log_dict.keys(): |
|
self.time_sec_tot += (log_dict['time'] * self.interval) |
|
time_sec_avg = self.time_sec_tot / ( |
|
runner.iter - self.start_iter + 1) |
|
eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) |
|
eta_str = str(datetime.timedelta(seconds=int(eta_sec))) |
|
log_str += f'eta: {eta_str}, ' |
|
log_str += f'time: {log_dict["time"]:.3f}, ' \ |
|
f'data_time: {log_dict["data_time"]:.3f}, ' |
|
|
|
if torch.cuda.is_available(): |
|
log_str += f'memory: {log_dict["memory"]}, ' |
|
else: |
|
|
|
|
|
|
|
|
|
if self.by_epoch: |
|
log_str = f'Epoch({log_dict["mode"]}) ' \ |
|
f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t' |
|
else: |
|
log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t' |
|
|
|
log_items = [] |
|
for name, val in log_dict.items(): |
|
|
|
|
|
if name in [ |
|
'mode', 'Epoch', 'iter', 'lr', 'time', 'data_time', |
|
'memory', 'epoch' |
|
]: |
|
continue |
|
if isinstance(val, float): |
|
val = f'{val:.4f}' |
|
log_items.append(f'{name}: {val}') |
|
log_str += ', '.join(log_items) |
|
|
|
runner.logger.info(log_str) |
|
|
|
def _dump_log(self, log_dict, runner): |
|
|
|
json_log = OrderedDict() |
|
for k, v in log_dict.items(): |
|
json_log[k] = self._round_float(v) |
|
|
|
if runner.rank == 0: |
|
with open(self.json_log_path, 'a+') as f: |
|
mmcv.dump(json_log, f, file_format='json') |
|
f.write('\n') |
|
|
|
def _round_float(self, items): |
|
if isinstance(items, list): |
|
return [self._round_float(item) for item in items] |
|
elif isinstance(items, float): |
|
return round(items, 5) |
|
else: |
|
return items |
|
|
|
def log(self, runner): |
|
if 'eval_iter_num' in runner.log_buffer.output: |
|
|
|
cur_iter = runner.log_buffer.output.pop('eval_iter_num') |
|
else: |
|
cur_iter = self.get_iter(runner, inner_iter=True) |
|
|
|
log_dict = OrderedDict( |
|
mode=self.get_mode(runner), |
|
epoch=self.get_epoch(runner), |
|
iter=cur_iter) |
|
|
|
|
|
cur_lr = runner.current_lr() |
|
if isinstance(cur_lr, list): |
|
log_dict['lr'] = cur_lr[0] |
|
else: |
|
assert isinstance(cur_lr, dict) |
|
log_dict['lr'] = {} |
|
for k, lr_ in cur_lr.items(): |
|
assert isinstance(lr_, list) |
|
log_dict['lr'].update({k: lr_[0]}) |
|
|
|
if 'time' in runner.log_buffer.output: |
|
|
|
if torch.cuda.is_available(): |
|
log_dict['memory'] = self._get_max_memory(runner) |
|
|
|
log_dict = dict(log_dict, **runner.log_buffer.output) |
|
|
|
self._log_info(log_dict, runner) |
|
self._dump_log(log_dict, runner) |
|
return log_dict |
|
|
|
def after_run(self, runner): |
|
|
|
if self.out_dir is not None: |
|
for filename in scandir(runner.work_dir, self.out_suffix, True): |
|
local_filepath = osp.join(runner.work_dir, filename) |
|
out_filepath = self.file_client.join_path( |
|
self.out_dir, filename) |
|
with open(local_filepath, 'r') as f: |
|
self.file_client.put_text(f.read(), out_filepath) |
|
|
|
runner.logger.info( |
|
(f'The file {local_filepath} has been uploaded to ' |
|
f'{out_filepath}.')) |
|
|
|
if not self.keep_local: |
|
os.remove(local_filepath) |
|
runner.logger.info( |
|
(f'{local_filepath} was removed due to the ' |
|
'`self.keep_local=False`')) |
|
|