|
|
|
import copy |
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from annotator.uniformer.mmcv import ConfigDict, deprecated_api_warning |
|
from annotator.uniformer.mmcv.cnn import Linear, build_activation_layer, build_norm_layer |
|
from annotator.uniformer.mmcv.runner.base_module import BaseModule, ModuleList, Sequential |
|
from annotator.uniformer.mmcv.utils import build_from_cfg |
|
from .drop import build_dropout |
|
from .registry import (ATTENTION, FEEDFORWARD_NETWORK, POSITIONAL_ENCODING, |
|
TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE) |
|
|
|
|
|
try: |
|
from annotator.uniformer.mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention |
|
warnings.warn( |
|
ImportWarning( |
|
'``MultiScaleDeformableAttention`` has been moved to ' |
|
'``mmcv.ops.multi_scale_deform_attn``, please change original path ' |
|
'``from annotator.uniformer.mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention`` ' |
|
'to ``from annotator.uniformer.mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention`` ' |
|
)) |
|
|
|
except ImportError: |
|
warnings.warn('Fail to import ``MultiScaleDeformableAttention`` from ' |
|
'``mmcv.ops.multi_scale_deform_attn``, ' |
|
'You should install ``mmcv-full`` if you need this module. ') |
|
|
|
|
|
def build_positional_encoding(cfg, default_args=None): |
|
"""Builder for Position Encoding.""" |
|
return build_from_cfg(cfg, POSITIONAL_ENCODING, default_args) |
|
|
|
|
|
def build_attention(cfg, default_args=None): |
|
"""Builder for attention.""" |
|
return build_from_cfg(cfg, ATTENTION, default_args) |
|
|
|
|
|
def build_feedforward_network(cfg, default_args=None): |
|
"""Builder for feed-forward network (FFN).""" |
|
return build_from_cfg(cfg, FEEDFORWARD_NETWORK, default_args) |
|
|
|
|
|
def build_transformer_layer(cfg, default_args=None): |
|
"""Builder for transformer layer.""" |
|
return build_from_cfg(cfg, TRANSFORMER_LAYER, default_args) |
|
|
|
|
|
def build_transformer_layer_sequence(cfg, default_args=None): |
|
"""Builder for transformer encoder and transformer decoder.""" |
|
return build_from_cfg(cfg, TRANSFORMER_LAYER_SEQUENCE, default_args) |
|
|
|
|
|
@ATTENTION.register_module() |
|
class MultiheadAttention(BaseModule): |
|
"""A wrapper for ``torch.nn.MultiheadAttention``. |
|
|
|
This module implements MultiheadAttention with identity connection, |
|
and positional encoding is also passed as input. |
|
|
|
Args: |
|
embed_dims (int): The embedding dimension. |
|
num_heads (int): Parallel attention heads. |
|
attn_drop (float): A Dropout layer on attn_output_weights. |
|
Default: 0.0. |
|
proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. |
|
Default: 0.0. |
|
dropout_layer (obj:`ConfigDict`): The dropout_layer used |
|
when adding the shortcut. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
batch_first (bool): When it is True, Key, Query and Value are shape of |
|
(batch, n, embed_dim), otherwise (n, batch, embed_dim). |
|
Default to False. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads, |
|
attn_drop=0., |
|
proj_drop=0., |
|
dropout_layer=dict(type='Dropout', drop_prob=0.), |
|
init_cfg=None, |
|
batch_first=False, |
|
**kwargs): |
|
super(MultiheadAttention, self).__init__(init_cfg) |
|
if 'dropout' in kwargs: |
|
warnings.warn('The arguments `dropout` in MultiheadAttention ' |
|
'has been deprecated, now you can separately ' |
|
'set `attn_drop`(float), proj_drop(float), ' |
|
'and `dropout_layer`(dict) ') |
|
attn_drop = kwargs['dropout'] |
|
dropout_layer['drop_prob'] = kwargs.pop('dropout') |
|
|
|
self.embed_dims = embed_dims |
|
self.num_heads = num_heads |
|
self.batch_first = batch_first |
|
|
|
self.attn = nn.MultiheadAttention(embed_dims, num_heads, attn_drop, |
|
**kwargs) |
|
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.dropout_layer = build_dropout( |
|
dropout_layer) if dropout_layer else nn.Identity() |
|
|
|
@deprecated_api_warning({'residual': 'identity'}, |
|
cls_name='MultiheadAttention') |
|
def forward(self, |
|
query, |
|
key=None, |
|
value=None, |
|
identity=None, |
|
query_pos=None, |
|
key_pos=None, |
|
attn_mask=None, |
|
key_padding_mask=None, |
|
**kwargs): |
|
"""Forward function for `MultiheadAttention`. |
|
|
|
**kwargs allow passing a more general data flow when combining |
|
with other operations in `transformerlayer`. |
|
|
|
Args: |
|
query (Tensor): The input query with shape [num_queries, bs, |
|
embed_dims] if self.batch_first is False, else |
|
[bs, num_queries embed_dims]. |
|
key (Tensor): The key tensor with shape [num_keys, bs, |
|
embed_dims] if self.batch_first is False, else |
|
[bs, num_keys, embed_dims] . |
|
If None, the ``query`` will be used. Defaults to None. |
|
value (Tensor): The value tensor with same shape as `key`. |
|
Same in `nn.MultiheadAttention.forward`. Defaults to None. |
|
If None, the `key` will be used. |
|
identity (Tensor): This tensor, with the same shape as x, |
|
will be used for the identity link. |
|
If None, `x` will be used. Defaults to None. |
|
query_pos (Tensor): The positional encoding for query, with |
|
the same shape as `x`. If not None, it will |
|
be added to `x` before forward function. Defaults to None. |
|
key_pos (Tensor): The positional encoding for `key`, with the |
|
same shape as `key`. Defaults to None. If not None, it will |
|
be added to `key` before forward function. If None, and |
|
`query_pos` has the same shape as `key`, then `query_pos` |
|
will be used for `key_pos`. Defaults to None. |
|
attn_mask (Tensor): ByteTensor mask with shape [num_queries, |
|
num_keys]. Same in `nn.MultiheadAttention.forward`. |
|
Defaults to None. |
|
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. |
|
Defaults to None. |
|
|
|
Returns: |
|
Tensor: forwarded results with shape |
|
[num_queries, bs, embed_dims] |
|
if self.batch_first is False, else |
|
[bs, num_queries embed_dims]. |
|
""" |
|
|
|
if key is None: |
|
key = query |
|
if value is None: |
|
value = key |
|
if identity is None: |
|
identity = query |
|
if key_pos is None: |
|
if query_pos is not None: |
|
|
|
if query_pos.shape == key.shape: |
|
key_pos = query_pos |
|
else: |
|
warnings.warn(f'position encoding of key is' |
|
f'missing in {self.__class__.__name__}.') |
|
if query_pos is not None: |
|
query = query + query_pos |
|
if key_pos is not None: |
|
key = key + key_pos |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.batch_first: |
|
query = query.transpose(0, 1) |
|
key = key.transpose(0, 1) |
|
value = value.transpose(0, 1) |
|
|
|
out = self.attn( |
|
query=query, |
|
key=key, |
|
value=value, |
|
attn_mask=attn_mask, |
|
key_padding_mask=key_padding_mask)[0] |
|
|
|
if self.batch_first: |
|
out = out.transpose(0, 1) |
|
|
|
return identity + self.dropout_layer(self.proj_drop(out)) |
|
|
|
|
|
@FEEDFORWARD_NETWORK.register_module() |
|
class FFN(BaseModule): |
|
"""Implements feed-forward networks (FFNs) with identity connection. |
|
|
|
Args: |
|
embed_dims (int): The feature dimension. Same as |
|
`MultiheadAttention`. Defaults: 256. |
|
feedforward_channels (int): The hidden dimension of FFNs. |
|
Defaults: 1024. |
|
num_fcs (int, optional): The number of fully-connected layers in |
|
FFNs. Default: 2. |
|
act_cfg (dict, optional): The activation config for FFNs. |
|
Default: dict(type='ReLU') |
|
ffn_drop (float, optional): Probability of an element to be |
|
zeroed in FFN. Default 0.0. |
|
add_identity (bool, optional): Whether to add the |
|
identity connection. Default: `True`. |
|
dropout_layer (obj:`ConfigDict`): The dropout_layer used |
|
when adding the shortcut. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
@deprecated_api_warning( |
|
{ |
|
'dropout': 'ffn_drop', |
|
'add_residual': 'add_identity' |
|
}, |
|
cls_name='FFN') |
|
def __init__(self, |
|
embed_dims=256, |
|
feedforward_channels=1024, |
|
num_fcs=2, |
|
act_cfg=dict(type='ReLU', inplace=True), |
|
ffn_drop=0., |
|
dropout_layer=None, |
|
add_identity=True, |
|
init_cfg=None, |
|
**kwargs): |
|
super(FFN, self).__init__(init_cfg) |
|
assert num_fcs >= 2, 'num_fcs should be no less ' \ |
|
f'than 2. got {num_fcs}.' |
|
self.embed_dims = embed_dims |
|
self.feedforward_channels = feedforward_channels |
|
self.num_fcs = num_fcs |
|
self.act_cfg = act_cfg |
|
self.activate = build_activation_layer(act_cfg) |
|
|
|
layers = [] |
|
in_channels = embed_dims |
|
for _ in range(num_fcs - 1): |
|
layers.append( |
|
Sequential( |
|
Linear(in_channels, feedforward_channels), self.activate, |
|
nn.Dropout(ffn_drop))) |
|
in_channels = feedforward_channels |
|
layers.append(Linear(feedforward_channels, embed_dims)) |
|
layers.append(nn.Dropout(ffn_drop)) |
|
self.layers = Sequential(*layers) |
|
self.dropout_layer = build_dropout( |
|
dropout_layer) if dropout_layer else torch.nn.Identity() |
|
self.add_identity = add_identity |
|
|
|
@deprecated_api_warning({'residual': 'identity'}, cls_name='FFN') |
|
def forward(self, x, identity=None): |
|
"""Forward function for `FFN`. |
|
|
|
The function would add x to the output tensor if residue is None. |
|
""" |
|
out = self.layers(x) |
|
if not self.add_identity: |
|
return self.dropout_layer(out) |
|
if identity is None: |
|
identity = x |
|
return identity + self.dropout_layer(out) |
|
|
|
|
|
@TRANSFORMER_LAYER.register_module() |
|
class BaseTransformerLayer(BaseModule): |
|
"""Base `TransformerLayer` for vision transformer. |
|
|
|
It can be built from `mmcv.ConfigDict` and support more flexible |
|
customization, for example, using any number of `FFN or LN ` and |
|
use different kinds of `attention` by specifying a list of `ConfigDict` |
|
named `attn_cfgs`. It is worth mentioning that it supports `prenorm` |
|
when you specifying `norm` as the first element of `operation_order`. |
|
More details about the `prenorm`: `On Layer Normalization in the |
|
Transformer Architecture <https://arxiv.org/abs/2002.04745>`_ . |
|
|
|
Args: |
|
attn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )): |
|
Configs for `self_attention` or `cross_attention` modules, |
|
The order of the configs in the list should be consistent with |
|
corresponding attentions in operation_order. |
|
If it is a dict, all of the attention modules in operation_order |
|
will be built with this config. Default: None. |
|
ffn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )): |
|
Configs for FFN, The order of the configs in the list should be |
|
consistent with corresponding ffn in operation_order. |
|
If it is a dict, all of the attention modules in operation_order |
|
will be built with this config. |
|
operation_order (tuple[str]): The execution order of operation |
|
in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). |
|
Support `prenorm` when you specifying first element as `norm`. |
|
Default:None. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
batch_first (bool): Key, Query and Value are shape |
|
of (batch, n, embed_dim) |
|
or (n, batch, embed_dim). Default to False. |
|
""" |
|
|
|
def __init__(self, |
|
attn_cfgs=None, |
|
ffn_cfgs=dict( |
|
type='FFN', |
|
embed_dims=256, |
|
feedforward_channels=1024, |
|
num_fcs=2, |
|
ffn_drop=0., |
|
act_cfg=dict(type='ReLU', inplace=True), |
|
), |
|
operation_order=None, |
|
norm_cfg=dict(type='LN'), |
|
init_cfg=None, |
|
batch_first=False, |
|
**kwargs): |
|
|
|
deprecated_args = dict( |
|
feedforward_channels='feedforward_channels', |
|
ffn_dropout='ffn_drop', |
|
ffn_num_fcs='num_fcs') |
|
for ori_name, new_name in deprecated_args.items(): |
|
if ori_name in kwargs: |
|
warnings.warn( |
|
f'The arguments `{ori_name}` in BaseTransformerLayer ' |
|
f'has been deprecated, now you should set `{new_name}` ' |
|
f'and other FFN related arguments ' |
|
f'to a dict named `ffn_cfgs`. ') |
|
ffn_cfgs[new_name] = kwargs[ori_name] |
|
|
|
super(BaseTransformerLayer, self).__init__(init_cfg) |
|
|
|
self.batch_first = batch_first |
|
|
|
assert set(operation_order) & set( |
|
['self_attn', 'norm', 'ffn', 'cross_attn']) == \ |
|
set(operation_order), f'The operation_order of' \ |
|
f' {self.__class__.__name__} should ' \ |
|
f'contains all four operation type ' \ |
|
f"{['self_attn', 'norm', 'ffn', 'cross_attn']}" |
|
|
|
num_attn = operation_order.count('self_attn') + operation_order.count( |
|
'cross_attn') |
|
if isinstance(attn_cfgs, dict): |
|
attn_cfgs = [copy.deepcopy(attn_cfgs) for _ in range(num_attn)] |
|
else: |
|
assert num_attn == len(attn_cfgs), f'The length ' \ |
|
f'of attn_cfg {num_attn} is ' \ |
|
f'not consistent with the number of attention' \ |
|
f'in operation_order {operation_order}.' |
|
|
|
self.num_attn = num_attn |
|
self.operation_order = operation_order |
|
self.norm_cfg = norm_cfg |
|
self.pre_norm = operation_order[0] == 'norm' |
|
self.attentions = ModuleList() |
|
|
|
index = 0 |
|
for operation_name in operation_order: |
|
if operation_name in ['self_attn', 'cross_attn']: |
|
if 'batch_first' in attn_cfgs[index]: |
|
assert self.batch_first == attn_cfgs[index]['batch_first'] |
|
else: |
|
attn_cfgs[index]['batch_first'] = self.batch_first |
|
attention = build_attention(attn_cfgs[index]) |
|
|
|
|
|
attention.operation_name = operation_name |
|
self.attentions.append(attention) |
|
index += 1 |
|
|
|
self.embed_dims = self.attentions[0].embed_dims |
|
|
|
self.ffns = ModuleList() |
|
num_ffns = operation_order.count('ffn') |
|
if isinstance(ffn_cfgs, dict): |
|
ffn_cfgs = ConfigDict(ffn_cfgs) |
|
if isinstance(ffn_cfgs, dict): |
|
ffn_cfgs = [copy.deepcopy(ffn_cfgs) for _ in range(num_ffns)] |
|
assert len(ffn_cfgs) == num_ffns |
|
for ffn_index in range(num_ffns): |
|
if 'embed_dims' not in ffn_cfgs[ffn_index]: |
|
ffn_cfgs['embed_dims'] = self.embed_dims |
|
else: |
|
assert ffn_cfgs[ffn_index]['embed_dims'] == self.embed_dims |
|
self.ffns.append( |
|
build_feedforward_network(ffn_cfgs[ffn_index], |
|
dict(type='FFN'))) |
|
|
|
self.norms = ModuleList() |
|
num_norms = operation_order.count('norm') |
|
for _ in range(num_norms): |
|
self.norms.append(build_norm_layer(norm_cfg, self.embed_dims)[1]) |
|
|
|
def forward(self, |
|
query, |
|
key=None, |
|
value=None, |
|
query_pos=None, |
|
key_pos=None, |
|
attn_masks=None, |
|
query_key_padding_mask=None, |
|
key_padding_mask=None, |
|
**kwargs): |
|
"""Forward function for `TransformerDecoderLayer`. |
|
|
|
**kwargs contains some specific arguments of attentions. |
|
|
|
Args: |
|
query (Tensor): The input query with shape |
|
[num_queries, bs, embed_dims] if |
|
self.batch_first is False, else |
|
[bs, num_queries embed_dims]. |
|
key (Tensor): The key tensor with shape [num_keys, bs, |
|
embed_dims] if self.batch_first is False, else |
|
[bs, num_keys, embed_dims] . |
|
value (Tensor): The value tensor with same shape as `key`. |
|
query_pos (Tensor): The positional encoding for `query`. |
|
Default: None. |
|
key_pos (Tensor): The positional encoding for `key`. |
|
Default: None. |
|
attn_masks (List[Tensor] | None): 2D Tensor used in |
|
calculation of corresponding attention. The length of |
|
it should equal to the number of `attention` in |
|
`operation_order`. Default: None. |
|
query_key_padding_mask (Tensor): ByteTensor for `query`, with |
|
shape [bs, num_queries]. Only used in `self_attn` layer. |
|
Defaults to None. |
|
key_padding_mask (Tensor): ByteTensor for `query`, with |
|
shape [bs, num_keys]. Default: None. |
|
|
|
Returns: |
|
Tensor: forwarded results with shape [num_queries, bs, embed_dims]. |
|
""" |
|
|
|
norm_index = 0 |
|
attn_index = 0 |
|
ffn_index = 0 |
|
identity = query |
|
if attn_masks is None: |
|
attn_masks = [None for _ in range(self.num_attn)] |
|
elif isinstance(attn_masks, torch.Tensor): |
|
attn_masks = [ |
|
copy.deepcopy(attn_masks) for _ in range(self.num_attn) |
|
] |
|
warnings.warn(f'Use same attn_mask in all attentions in ' |
|
f'{self.__class__.__name__} ') |
|
else: |
|
assert len(attn_masks) == self.num_attn, f'The length of ' \ |
|
f'attn_masks {len(attn_masks)} must be equal ' \ |
|
f'to the number of attention in ' \ |
|
f'operation_order {self.num_attn}' |
|
|
|
for layer in self.operation_order: |
|
if layer == 'self_attn': |
|
temp_key = temp_value = query |
|
query = self.attentions[attn_index]( |
|
query, |
|
temp_key, |
|
temp_value, |
|
identity if self.pre_norm else None, |
|
query_pos=query_pos, |
|
key_pos=query_pos, |
|
attn_mask=attn_masks[attn_index], |
|
key_padding_mask=query_key_padding_mask, |
|
**kwargs) |
|
attn_index += 1 |
|
identity = query |
|
|
|
elif layer == 'norm': |
|
query = self.norms[norm_index](query) |
|
norm_index += 1 |
|
|
|
elif layer == 'cross_attn': |
|
query = self.attentions[attn_index]( |
|
query, |
|
key, |
|
value, |
|
identity if self.pre_norm else None, |
|
query_pos=query_pos, |
|
key_pos=key_pos, |
|
attn_mask=attn_masks[attn_index], |
|
key_padding_mask=key_padding_mask, |
|
**kwargs) |
|
attn_index += 1 |
|
identity = query |
|
|
|
elif layer == 'ffn': |
|
query = self.ffns[ffn_index]( |
|
query, identity if self.pre_norm else None) |
|
ffn_index += 1 |
|
|
|
return query |
|
|
|
|
|
@TRANSFORMER_LAYER_SEQUENCE.register_module() |
|
class TransformerLayerSequence(BaseModule): |
|
"""Base class for TransformerEncoder and TransformerDecoder in vision |
|
transformer. |
|
|
|
As base-class of Encoder and Decoder in vision transformer. |
|
Support customization such as specifying different kind |
|
of `transformer_layer` in `transformer_coder`. |
|
|
|
Args: |
|
transformerlayer (list[obj:`mmcv.ConfigDict`] | |
|
obj:`mmcv.ConfigDict`): Config of transformerlayer |
|
in TransformerCoder. If it is obj:`mmcv.ConfigDict`, |
|
it would be repeated `num_layer` times to a |
|
list[`mmcv.ConfigDict`]. Default: None. |
|
num_layers (int): The number of `TransformerLayer`. Default: None. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, transformerlayers=None, num_layers=None, init_cfg=None): |
|
super(TransformerLayerSequence, self).__init__(init_cfg) |
|
if isinstance(transformerlayers, dict): |
|
transformerlayers = [ |
|
copy.deepcopy(transformerlayers) for _ in range(num_layers) |
|
] |
|
else: |
|
assert isinstance(transformerlayers, list) and \ |
|
len(transformerlayers) == num_layers |
|
self.num_layers = num_layers |
|
self.layers = ModuleList() |
|
for i in range(num_layers): |
|
self.layers.append(build_transformer_layer(transformerlayers[i])) |
|
self.embed_dims = self.layers[0].embed_dims |
|
self.pre_norm = self.layers[0].pre_norm |
|
|
|
def forward(self, |
|
query, |
|
key, |
|
value, |
|
query_pos=None, |
|
key_pos=None, |
|
attn_masks=None, |
|
query_key_padding_mask=None, |
|
key_padding_mask=None, |
|
**kwargs): |
|
"""Forward function for `TransformerCoder`. |
|
|
|
Args: |
|
query (Tensor): Input query with shape |
|
`(num_queries, bs, embed_dims)`. |
|
key (Tensor): The key tensor with shape |
|
`(num_keys, bs, embed_dims)`. |
|
value (Tensor): The value tensor with shape |
|
`(num_keys, bs, embed_dims)`. |
|
query_pos (Tensor): The positional encoding for `query`. |
|
Default: None. |
|
key_pos (Tensor): The positional encoding for `key`. |
|
Default: None. |
|
attn_masks (List[Tensor], optional): Each element is 2D Tensor |
|
which is used in calculation of corresponding attention in |
|
operation_order. Default: None. |
|
query_key_padding_mask (Tensor): ByteTensor for `query`, with |
|
shape [bs, num_queries]. Only used in self-attention |
|
Default: None. |
|
key_padding_mask (Tensor): ByteTensor for `query`, with |
|
shape [bs, num_keys]. Default: None. |
|
|
|
Returns: |
|
Tensor: results with shape [num_queries, bs, embed_dims]. |
|
""" |
|
for layer in self.layers: |
|
query = layer( |
|
query, |
|
key, |
|
value, |
|
query_pos=query_pos, |
|
key_pos=key_pos, |
|
attn_masks=attn_masks, |
|
query_key_padding_mask=query_key_padding_mask, |
|
key_padding_mask=key_padding_mask, |
|
**kwargs) |
|
return query |
|
|