geolocal commited on
Commit
f18ea8c
1 Parent(s): 8fb3273

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -74
README.md CHANGED
@@ -10,9 +10,6 @@ widget:
10
  - src: https://huggingface.co/lhaas/StreetCLIP/resolve/main/sanfrancisco.jpeg
11
  candidate_labels: San Jose, San Diego, Los Angeles, Las Vegas, San Francisco, Seattle
12
  example_title: Cities
13
- - src: https://huggingface.co/lhaas/StreetCLIP/resolve/main/australia.jpeg
14
- candidate_labels: tropical climate, dry climate, temperate climate, continental climate, polar climate
15
- example_title: Climate
16
  library_name: transformers
17
  tags:
18
  - geolocalization
@@ -23,10 +20,16 @@ tags:
23
  - clip
24
  - urban
25
  - rural
 
26
  ---
27
- # Model Card for Model ID
28
 
29
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
30
 
31
 
32
  # Model Details
@@ -44,44 +47,32 @@ tags:
44
 
45
  ## Model Sources
46
 
47
- <!-- Provide the basic links for the model. -->
48
-
49
- - **Paper:** Pre-print available soon ..
50
  - **Demo:** Currently in development ...
51
 
52
  # Uses
53
 
54
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
55
 
56
  ## Direct Use
57
 
58
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Downstream Use [optional]
63
 
64
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
65
 
66
- [More Information Needed]
67
 
68
  ## Out-of-Scope Use
69
 
70
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
71
-
72
- [More Information Needed]
73
 
74
  # Bias, Risks, and Limitations
75
 
76
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
77
-
78
- [More Information Needed]
79
 
80
  ## Recommendations
81
 
82
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
83
-
84
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
85
 
86
  ## How to Get Started with the Model
87
 
@@ -93,10 +84,10 @@ import requests
93
 
94
  from transformers import CLIPProcessor, CLIPModel
95
 
96
- model = CLIPModel.from_pretrained("lhaas/StreetCLIP")
97
- processor = CLIPProcessor.from_pretrained("lhaas/StreetCLIP")
98
 
99
- url = "https://huggingface.co/lhaas/StreetCLIP/resolve/main/sanfrancisco.jpeg"
100
  image = Image.open(requests.get(url, stream=True).raw)
101
 
102
  choices = ["San Jose", "San Diego", "Los Angeles", "Las Vegas", "San Francisco"]
@@ -111,83 +102,55 @@ probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the lab
111
 
112
  ## Training Data
113
 
114
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
115
 
116
- [More Information Needed]
117
-
118
- ## Training Procedure [optional]
119
-
120
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
121
 
122
  ### Preprocessing
123
 
124
- [More Information Needed]
125
-
126
- ### Speeds, Sizes, Times
127
-
128
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
129
-
130
- [More Information Needed]
131
 
132
  # Evaluation
133
 
134
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
135
 
136
  ## Testing Data, Factors & Metrics
137
 
138
  ### Testing Data
139
 
140
- <!-- This should link to a Data Card if possible. -->
141
-
142
- [More Information Needed]
143
-
144
- ### Factors
145
-
146
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
147
-
148
- [More Information Needed]
149
 
150
  ### Metrics
151
 
152
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
153
-
154
- [More Information Needed]
155
 
156
  ## Results
157
 
158
- [More Information Needed]
159
 
160
  ### Summary
161
 
162
-
163
-
164
- # Model Examination [optional]
165
-
166
- <!-- Relevant interpretability work for the model goes here -->
167
-
168
- [More Information Needed]
169
 
170
  # Environmental Impact
171
 
172
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
173
-
174
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
175
-
176
  - **Hardware Type:** 4 NVIDIA A100 GPUs
177
  - **Hours used:** 12
178
 
179
  # Example Image Attribution
180
 
181
- [More information needed]
182
 
183
- # Citation [optional]
184
 
185
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
186
 
187
  **BibTeX:**
188
 
189
- [More Information Needed]
190
-
191
- **APA:**
192
-
193
- [More Information Needed]
 
10
  - src: https://huggingface.co/lhaas/StreetCLIP/resolve/main/sanfrancisco.jpeg
11
  candidate_labels: San Jose, San Diego, Los Angeles, Las Vegas, San Francisco, Seattle
12
  example_title: Cities
 
 
 
13
  library_name: transformers
14
  tags:
15
  - geolocalization
 
20
  - clip
21
  - urban
22
  - rural
23
+ - multi-modal
24
  ---
25
+ # Model Card for StreetCLIP
26
 
27
+ StreetCLIP is a robust foundation model for open-domain image geolocalization and other
28
+ geographic and climate-related tasks.
29
+
30
+ Trained on a dataset of 1.1 million geo-tagged images, it achieves state-of-the-art performance
31
+ on multiple open-domain image geolocalization benchmarks in zero-shot, outperforming supervised models
32
+ trained on millions of images.
33
 
34
 
35
  # Model Details
 
47
 
48
  ## Model Sources
49
 
50
+ - **Paper:** Pre-print available soon ...
 
 
51
  - **Demo:** Currently in development ...
52
 
53
  # Uses
54
 
55
+ To be added soon ...
56
 
57
  ## Direct Use
58
 
59
+ To be added soon ...
 
 
 
 
60
 
61
+ ## Downstream Use
62
 
63
+ To be added soon ...
64
 
65
  ## Out-of-Scope Use
66
 
67
+ To be added soon ...
 
 
68
 
69
  # Bias, Risks, and Limitations
70
 
71
+ To be added soon ...
 
 
72
 
73
  ## Recommendations
74
 
75
+ To be added soon ...
 
 
76
 
77
  ## How to Get Started with the Model
78
 
 
84
 
85
  from transformers import CLIPProcessor, CLIPModel
86
 
87
+ model = CLIPModel.from_pretrained("geolocational/StreetCLIP")
88
+ processor = CLIPProcessor.from_pretrained("geolocational/StreetCLIP")
89
 
90
+ url = "https://huggingface.co/geolocational/StreetCLIP/resolve/main/sanfrancisco.jpeg"
91
  image = Image.open(requests.get(url, stream=True).raw)
92
 
93
  choices = ["San Jose", "San Diego", "Los Angeles", "Las Vegas", "San Francisco"]
 
102
 
103
  ## Training Data
104
 
105
+ StreetCLIP was trained on an undisclosed street-level dataset of 1.1 million real-world,
106
+ urban and rural images. The data used to train the model comes from 101 countries.
107
 
108
+ ## Training Procedure
 
 
 
 
109
 
110
  ### Preprocessing
111
 
112
+ Same preprocessing as [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336).
 
 
 
 
 
 
113
 
114
  # Evaluation
115
 
116
+ StreetCLIP was evaluated in zero-shot on two open-domain image geolocalization benchmarks using a
117
+ technique called hierarchical linear probing. Hierarchical linear probing sequentially attempts to
118
+ identify the correct country and then city of geographical image origin.
119
 
120
  ## Testing Data, Factors & Metrics
121
 
122
  ### Testing Data
123
 
124
+ * [IM2GPS](http://graphics.cs.cmu.edu/projects/im2gps/).
125
+ * [IM2GPS3K](https://github.com/lugiavn/revisiting-im2gps)
 
 
 
 
 
 
 
126
 
127
  ### Metrics
128
 
129
+ To be added soon ...
 
 
130
 
131
  ## Results
132
 
133
+ To be added soon ...
134
 
135
  ### Summary
136
 
137
+ Our experiments demonstrate that our synthetic caption pretraining method is capable of significantly
138
+ improving CLIP's generalized zero-shot capabilities applied to open-domain image geolocalization while
139
+ achieving SOTA performance on a selection of benchmark metrics.
 
 
 
 
140
 
141
  # Environmental Impact
142
 
 
 
 
 
143
  - **Hardware Type:** 4 NVIDIA A100 GPUs
144
  - **Hours used:** 12
145
 
146
  # Example Image Attribution
147
 
148
+ To be added soon ...
149
 
150
+ # Citation
151
 
152
+ Preprint available soon ...
153
 
154
  **BibTeX:**
155
 
156
+ Available soon ...