--- language: - az license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large v2 Azerbaijani results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 az type: mozilla-foundation/common_voice_11_0 config: az split: test args: az metrics: - name: Wer type: wer value: 38.46153846153847 --- # Whisper Large v2 Azerbaijani This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 az dataset. It achieves the following results on the evaluation set: - Loss: 0.9435 - Wer: 38.4615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0 | 999.0 | 1000 | 0.8373 | 39.6450 | | 0.0 | 1999.0 | 2000 | 0.9435 | 38.4615 | | 0.0 | 2999.0 | 3000 | 1.0010 | 43.1953 | | 0.0 | 3999.0 | 4000 | 1.0380 | 44.3787 | | 0.0 | 4999.0 | 5000 | 1.0529 | 43.7870 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2