--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: metadata-cls-no-gov-8k-vnnic results: [] --- # metadata-cls-no-gov-8k-vnnic This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co./vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2819 - Accuracy: 0.9319 - F1: 0.7796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.5853 | 1.1364 | 150 | 0.2434 | 0.9311 | 0.7583 | | 0.2425 | 2.2727 | 300 | 0.2510 | 0.9251 | 0.7630 | | 0.1714 | 3.4091 | 450 | 0.2222 | 0.9345 | 0.7682 | | 0.1274 | 4.5455 | 600 | 0.2391 | 0.9328 | 0.7862 | | 0.1075 | 5.6818 | 750 | 0.2507 | 0.9319 | 0.7732 | | 0.0867 | 6.8182 | 900 | 0.2808 | 0.9277 | 0.7711 | | 0.0625 | 7.9545 | 1050 | 0.2965 | 0.9243 | 0.7674 | | 0.0539 | 9.0909 | 1200 | 0.2819 | 0.9319 | 0.7796 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1