--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: metadata-cls-no-gov-8k-vnnic-xml results: [] --- # metadata-cls-no-gov-8k-vnnic-xml This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co./FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3308 - Accuracy: 0.9345 - F1: 0.7072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | No log | 0.5703 | 150 | 0.2151 | 0.9411 | 0.4945 | | 0.5567 | 1.1407 | 300 | 0.2789 | 0.9121 | 0.4579 | | 0.5567 | 1.7110 | 450 | 0.2676 | 0.9130 | 0.6930 | | 0.2703 | 2.2814 | 600 | 0.1926 | 0.9345 | 0.7071 | | 0.2703 | 2.8517 | 750 | 0.1984 | 0.9411 | 0.7390 | | 0.2055 | 3.4221 | 900 | 0.2503 | 0.9205 | 0.6689 | | 0.1573 | 3.9924 | 1050 | 0.1895 | 0.9476 | 0.7332 | | 0.1573 | 4.5627 | 1200 | 0.3001 | 0.9130 | 0.6974 | | 0.1287 | 5.1331 | 1350 | 0.1834 | 0.9495 | 0.7302 | | 0.1287 | 5.7034 | 1500 | 0.2586 | 0.9429 | 0.7345 | | 0.1022 | 6.2738 | 1650 | 0.3486 | 0.9261 | 0.7055 | | 0.1022 | 6.8441 | 1800 | 0.3064 | 0.9317 | 0.7053 | | 0.085 | 7.4144 | 1950 | 0.3445 | 0.9308 | 0.7086 | | 0.0689 | 7.9848 | 2100 | 0.3342 | 0.9336 | 0.7130 | | 0.0689 | 8.5551 | 2250 | 0.3272 | 0.9345 | 0.7074 | | 0.0525 | 9.1255 | 2400 | 0.3391 | 0.9345 | 0.7030 | | 0.0525 | 9.6958 | 2550 | 0.3308 | 0.9345 | 0.7072 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1